An atlas of K3 surfaces with finite automorphism group

Pub Date : 2020-03-19 DOI:10.46298/epiga.2022.6286
X. Roulleau
{"title":"An atlas of K3 surfaces with finite automorphism group","authors":"X. Roulleau","doi":"10.46298/epiga.2022.6286","DOIUrl":null,"url":null,"abstract":"We study the geometry of the K3 surfaces $X$ with a finite number\nautomorphisms and Picard number $\\geq 3$. We describe these surfaces classified\nby Nikulin and Vinberg as double covers of simpler surfaces or embedded in a\nprojective space. We study moreover the configurations of their finite set of\n$(-2)$-curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.6286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves.
分享
查看原文
具有有限自同构群的K3曲面的一个图集
研究了具有有限数自同构和Picard数$\geq 3$的K3曲面$X$的几何性质。我们将这些由Nikulin和Vinberg分类的曲面描述为简单曲面的双重覆盖或嵌入在射影空间中。进一步研究了它们的有限集$(-2)$ -曲线的构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信