{"title":"Impact of lanthanum doped zirconium oxide (LaZrO2) gate dielectric material on FinFET inverter","authors":"Gurpurneet Kaur, S. S. Gill, M. Rattan","doi":"10.21307/ijssis-2020-032","DOIUrl":null,"url":null,"abstract":"Abstract Fin-typed field effect transistor (FinFET) has considered a suitable device for low power and high-performance applications. The incorporation of gate dielectric lanthanum doped zirconium oxide (LaZrO2) in the 14 nm silicon on insulator (SOI) FinFET not only enhanced effective carrier mobility but also diminished the short channel effects (SCEs). The FinFET embodiment with LaZrO2 has dwindled subthreshold swing (SS), reduced drain-induced barrier lowering (DIBL), and raised on-current to off-current ratio as a contrast to SiO2-based FinFET. A remarkable enhancement of 1.18×, 11×, and 1.3× for transconductance (gm), early voltage (VEA), and an intrinsic gain (AV), respectively, have been investigated. Further, LaZrO2-based n-FinFET and p-FinFET devices have devised with equal dimensions. The improved noise margin of 0.375 V using a single-fin FinFET-based inverter circuit has proven the acceptance of this device in a circuit application.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":"1 - 10"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Fin-typed field effect transistor (FinFET) has considered a suitable device for low power and high-performance applications. The incorporation of gate dielectric lanthanum doped zirconium oxide (LaZrO2) in the 14 nm silicon on insulator (SOI) FinFET not only enhanced effective carrier mobility but also diminished the short channel effects (SCEs). The FinFET embodiment with LaZrO2 has dwindled subthreshold swing (SS), reduced drain-induced barrier lowering (DIBL), and raised on-current to off-current ratio as a contrast to SiO2-based FinFET. A remarkable enhancement of 1.18×, 11×, and 1.3× for transconductance (gm), early voltage (VEA), and an intrinsic gain (AV), respectively, have been investigated. Further, LaZrO2-based n-FinFET and p-FinFET devices have devised with equal dimensions. The improved noise margin of 0.375 V using a single-fin FinFET-based inverter circuit has proven the acceptance of this device in a circuit application.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity