{"title":"Localization of the Chain Recurrent set using Shape theory and Symbolical Dynamics","authors":"M. Shoptrajanov","doi":"10.1515/taa-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"7 1","pages":"13 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2019-0002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].