Localization of the Chain Recurrent set using Shape theory and Symbolical Dynamics

Q3 Mathematics
M. Shoptrajanov
{"title":"Localization of the Chain Recurrent set using Shape theory and Symbolical Dynamics","authors":"M. Shoptrajanov","doi":"10.1515/taa-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"7 1","pages":"13 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2019-0002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The main aim of this paper is localization of the chain recurrent set in shape theoretical framework. Namely, using the intrinsic approach to shape from [1] we present a result which claims that under certain conditions the chain recurrent set preserves local shape properties. We proved this result in [2] using the notion of a proper covering. Here we give a new proof using the Lebesque number for a covering and verify this result by investigating the symbolical image of a couple of systems of differential equations following [3].
基于形状理论和符号动力学的链递归集的局部化
摘要本文的主要目的是在形状理论框架中对链循环集进行局部化。也就是说,利用[1]的固有方法,我们给出了一个结果,声称在某些条件下链循环集保持局部形状性质。我们利用固有覆盖的概念在[2]中证明了这个结果。本文利用Lebesque数给出了覆盖的一个新的证明,并通过研究[3]之后的几个微分方程组的符号像来验证这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信