Deteksi Kesalahan Pengucapan Huruf Jawa Carakan dengan Jaringan Syaraf Tiruan Perambatan Balik

JK Aditya Christya Buditama, Catur Atmaji, A. E. Putra
{"title":"Deteksi Kesalahan Pengucapan Huruf Jawa Carakan dengan Jaringan Syaraf Tiruan Perambatan Balik","authors":"JK Aditya Christya Buditama, Catur Atmaji, A. E. Putra","doi":"10.22146/IJEIS.53437","DOIUrl":null,"url":null,"abstract":"Javanese is an Indonesian culture which needs to be preserved, but many Javanese students make mistakes in the pronunciation of Javanese letters and find it difficult to analyze errors by human teachers because of the limited time and subjective assessment, so a system is needed to detect incorrect pronunciation of Javanese letters. Mispronunciation detection system has been widely applied in foreign languages, but the system has not been implemented for Javanese carakan letters. This research develops the Javanese letters mispronunciation detection system using Back-Propagation Artificial Neural Networks (BP-ANN). The dataset is obtained from the recorded pronunciation of hanacaraka texts by 24 speakers  with 5 repetitions. ALNS method then used to automatically segment the signal into syllables. ANN-PB use statistical value of Mel-Frequency Cepstral Coefficient (MFCC) method with 7 and 14 coefficients. 10-Fold Cross Validation is used to validate and test the system. The Javanese mispronunciation detection using 7MFCC coefficients produces the highest accuracy of 80,07%. While the Javanese mispronunciation detection using 14 MFCC coefficients produces an accuracy of 82.36% at the highest.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJEIS.53437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Javanese is an Indonesian culture which needs to be preserved, but many Javanese students make mistakes in the pronunciation of Javanese letters and find it difficult to analyze errors by human teachers because of the limited time and subjective assessment, so a system is needed to detect incorrect pronunciation of Javanese letters. Mispronunciation detection system has been widely applied in foreign languages, but the system has not been implemented for Javanese carakan letters. This research develops the Javanese letters mispronunciation detection system using Back-Propagation Artificial Neural Networks (BP-ANN). The dataset is obtained from the recorded pronunciation of hanacaraka texts by 24 speakers  with 5 repetitions. ALNS method then used to automatically segment the signal into syllables. ANN-PB use statistical value of Mel-Frequency Cepstral Coefficient (MFCC) method with 7 and 14 coefficients. 10-Fold Cross Validation is used to validate and test the system. The Javanese mispronunciation detection using 7MFCC coefficients produces the highest accuracy of 80,07%. While the Javanese mispronunciation detection using 14 MFCC coefficients produces an accuracy of 82.36% at the highest.
用返回超时系统网络检测错误语音应答行为
爪哇语是一种需要保存的印尼文化,但是很多爪哇学生在爪哇语字母的发音上出现了错误,由于时间和主观评价的限制,人类教师很难分析错误,因此需要一个系统来检测爪哇语字母的错误发音。错误读音检测系统在外文中得到了广泛的应用,但对爪哇语卡拉坎语字母的错误读音检测系统尚未实现。本研究开发了基于反向传播人工神经网络(BP-ANN)的爪哇字母误读检测系统。该数据集是由24位说话者5次重复的哈那卡拉卡文本的发音记录获得的。然后用ALNS方法将信号自动分割成音节。ANN-PB采用Mel-Frequency Cepstral Coefficient (MFCC)方法统计值,分别为7和14个系数。10-Fold交叉验证用于验证和测试系统。利用7MFCC系数检测爪哇语的发音错误,准确率最高,达到80,07%。而使用14个MFCC系数检测爪哇语的错误发音,准确率最高可达82.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信