{"title":"Stationary Flows Revisited","authors":"A. Fordy, Qing Huang","doi":"10.3842/SIGMA.2023.015","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the subject of stationary flows of Lax hierarchies of a coupled KdV class. We explain the main ideas in the standard KdV case and then consider the dispersive water waves (DWW) case, with respectively 2 and 3 Hamiltonian representations. Each Hamiltonian representation gives us a different form of stationary flow. Comparing these, we construct Poisson maps, which, being non-canonical, give rise to bi-Hamiltonian representations of the stationary flows. An alternative approach is to use the Miura maps, which we do in the case of the DWW hierarchy, which has two ''modifications''. This structure gives us 3 sequences of Poisson related stationary flows. We use the Poisson maps to build a tri-Hamiltonian representation of each of the three stationary hierarchies. One of the Hamiltonian representations allows a multi-component squared eigenfunction expansion, which gives N degrees of freedom Hamiltonians, with first integrals. A Lax representation for each of the stationary flows is derived from the coupled KdV matrices. In the case of 3 degrees of freedom, we give a generalisation of our Lax matrices and Hamiltonian functions, which allows a connection with the rational Calogero-Moser (CM) system. This gives a coupling of the CM system with other potentials, along with a Lax representation. We present the particular case of coupling one of the integrable Hénon-Heiles systems to CM.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.015","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we revisit the subject of stationary flows of Lax hierarchies of a coupled KdV class. We explain the main ideas in the standard KdV case and then consider the dispersive water waves (DWW) case, with respectively 2 and 3 Hamiltonian representations. Each Hamiltonian representation gives us a different form of stationary flow. Comparing these, we construct Poisson maps, which, being non-canonical, give rise to bi-Hamiltonian representations of the stationary flows. An alternative approach is to use the Miura maps, which we do in the case of the DWW hierarchy, which has two ''modifications''. This structure gives us 3 sequences of Poisson related stationary flows. We use the Poisson maps to build a tri-Hamiltonian representation of each of the three stationary hierarchies. One of the Hamiltonian representations allows a multi-component squared eigenfunction expansion, which gives N degrees of freedom Hamiltonians, with first integrals. A Lax representation for each of the stationary flows is derived from the coupled KdV matrices. In the case of 3 degrees of freedom, we give a generalisation of our Lax matrices and Hamiltonian functions, which allows a connection with the rational Calogero-Moser (CM) system. This gives a coupling of the CM system with other potentials, along with a Lax representation. We present the particular case of coupling one of the integrable Hénon-Heiles systems to CM.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.