Assessment of Potent Phosphate-Solubilizing Bacteria Isolated from the Olive Tree Rhizosphere Grown on Phosphate Sludge and Their Effect on Common Bean Growth
El Houcine Ait-Ouakrim, A. Chakhchar, C. El Modafar, A. Douira, S. Amir, S. Ibnsouda-Koraichi, B. Belkadi, A. Filali-Maltouf
{"title":"Assessment of Potent Phosphate-Solubilizing Bacteria Isolated from the Olive Tree Rhizosphere Grown on Phosphate Sludge and Their Effect on Common Bean Growth","authors":"El Houcine Ait-Ouakrim, A. Chakhchar, C. El Modafar, A. Douira, S. Amir, S. Ibnsouda-Koraichi, B. Belkadi, A. Filali-Maltouf","doi":"10.1080/01490451.2023.2218839","DOIUrl":null,"url":null,"abstract":"Abstract One of the most restricting macronutrients for crop yield worldwide is phosphorus, which is often less than 1% of the total amount contained in soils. To promote its bioavailability, there are microorganisms considered vital that can solubilize and mineralize their pools in soils. In the current study, we assessed the potential of phosphate-solubilizing bacteria (PSB), isolated from the olive tree rhizosphere grown on phosphate sludge, to solubilize phosphate, promote plant growth, and tolerate abiotic stresses. Based on 16S rRNA gene sequencing, twenty-four PSB strains were identified and retained for in vitro analysis. According to the results, all the strains were able to solubilize the Moroccan rock phosphate, with soluble phosphate concentrations ranged from 5.34 µg/mL to 227 µg/mL. Furthermore, the majority of the strains are thermo-tolerant and halotolerant. Nonetheless, only five strains produced indole acetic acid. Regarding biocontrol potentialities, several PSB strains were characterized by producing hydrogen cyanide and hydrolytic enzymes (cellulase, and chitinase), of which three strains identified as Pseudomonas moraviensis, Bacillus cereus, and Bacillus aryabhattai, with a remarkable multi-trait combination were selected for antagonism and co-inoculation tests. The findings revealed that these PSB strains significantly inhibited Fusarium oxysporum (17.65%–62.35%) and Verticillium dahliae (52.35%–66.87%) and promoted common bean growth. The consortium of the three strains showed the best results by significantly increasing both plant height and tap root length and dry biomass compared to individual inoculation. The PSB selected from the olive tree rhizosphere growing on phosphate sludge have the potential to be useful as biofertilizer and biocontrol agents for attaining sustainable food crop production.","PeriodicalId":12647,"journal":{"name":"Geomicrobiology Journal","volume":"40 1","pages":"605 - 617"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomicrobiology Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01490451.2023.2218839","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract One of the most restricting macronutrients for crop yield worldwide is phosphorus, which is often less than 1% of the total amount contained in soils. To promote its bioavailability, there are microorganisms considered vital that can solubilize and mineralize their pools in soils. In the current study, we assessed the potential of phosphate-solubilizing bacteria (PSB), isolated from the olive tree rhizosphere grown on phosphate sludge, to solubilize phosphate, promote plant growth, and tolerate abiotic stresses. Based on 16S rRNA gene sequencing, twenty-four PSB strains were identified and retained for in vitro analysis. According to the results, all the strains were able to solubilize the Moroccan rock phosphate, with soluble phosphate concentrations ranged from 5.34 µg/mL to 227 µg/mL. Furthermore, the majority of the strains are thermo-tolerant and halotolerant. Nonetheless, only five strains produced indole acetic acid. Regarding biocontrol potentialities, several PSB strains were characterized by producing hydrogen cyanide and hydrolytic enzymes (cellulase, and chitinase), of which three strains identified as Pseudomonas moraviensis, Bacillus cereus, and Bacillus aryabhattai, with a remarkable multi-trait combination were selected for antagonism and co-inoculation tests. The findings revealed that these PSB strains significantly inhibited Fusarium oxysporum (17.65%–62.35%) and Verticillium dahliae (52.35%–66.87%) and promoted common bean growth. The consortium of the three strains showed the best results by significantly increasing both plant height and tap root length and dry biomass compared to individual inoculation. The PSB selected from the olive tree rhizosphere growing on phosphate sludge have the potential to be useful as biofertilizer and biocontrol agents for attaining sustainable food crop production.
期刊介绍:
Geomicrobiology Journal is a unified vehicle for research and review articles in geomicrobiology and microbial biogeochemistry. One or two special issues devoted to specific geomicrobiological topics are published each year. General articles deal with microbial transformations of geologically important minerals and elements, including those that occur in marine and freshwater environments, soils, mineral deposits and rock formations, and the environmental biogeochemical impact of these transformations. In this context, the functions of Bacteria and Archaea, yeasts, filamentous fungi, micro-algae, protists, and their viruses as geochemical agents are examined.
Articles may stress the nature of specific geologically important microorganisms and their activities, or the environmental and geological consequences of geomicrobiological activity.
The Journal covers an array of topics such as:
microbial weathering;
microbial roles in the formation and degradation of specific minerals;
mineralization of organic matter;
petroleum microbiology;
subsurface microbiology;
biofilm form and function, and other interfacial phenomena of geological importance;
biogeochemical cycling of elements;
isotopic fractionation;
paleomicrobiology.
Applied topics such as bioleaching microbiology, geomicrobiological prospecting, and groundwater pollution microbiology are addressed. New methods and techniques applied in geomicrobiological studies are also considered.