Shu Jiang, Hengfei Xu, Jiangling Dou, Dongquan Sun
{"title":"Dual-layer microstrip monopolar patch antenna with characteristic mode analysis","authors":"Shu Jiang, Hengfei Xu, Jiangling Dou, Dongquan Sun","doi":"10.1515/freq-2022-0230","DOIUrl":null,"url":null,"abstract":"Abstract A monopole-like stacked microstrip antenna with dual-layer patches is proposed for ultra-wideband applications. The characteristic mode analysis (CMA) is utilized and contributes to the multi-mode behavior investigation, guiding the design process. The dual-layer patches both consist of two concentric-coupled rings. The patch configuration is optimized according to the desired mode behaviors at different frequencies. Correspondingly, the three merged resonant modes, containing the modes TM01 and TM02 of the middle layer and TM01 in the top layer, effectively broaden the operation band. The measurements demonstrate that the impedance bandwidth (IBW) of the antenna reaches 4.70–10.20 GHz (73.8%) with the return loss of 10 dB and a maximum gain of 8.7 dBi. The cross-polarization level is better than −28 dB. The proposed antenna possesses a small radius of 30 mm (0.47 λ L ${\\lambda }_{L}$ ), and a low-profile of 5.78 mm (0.09 λ L ${\\lambda }_{L}$ ). λ L ${\\lambda }_{L}$ is the free-space wavelength at the lowest operation frequency.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0230","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A monopole-like stacked microstrip antenna with dual-layer patches is proposed for ultra-wideband applications. The characteristic mode analysis (CMA) is utilized and contributes to the multi-mode behavior investigation, guiding the design process. The dual-layer patches both consist of two concentric-coupled rings. The patch configuration is optimized according to the desired mode behaviors at different frequencies. Correspondingly, the three merged resonant modes, containing the modes TM01 and TM02 of the middle layer and TM01 in the top layer, effectively broaden the operation band. The measurements demonstrate that the impedance bandwidth (IBW) of the antenna reaches 4.70–10.20 GHz (73.8%) with the return loss of 10 dB and a maximum gain of 8.7 dBi. The cross-polarization level is better than −28 dB. The proposed antenna possesses a small radius of 30 mm (0.47 λ L ${\lambda }_{L}$ ), and a low-profile of 5.78 mm (0.09 λ L ${\lambda }_{L}$ ). λ L ${\lambda }_{L}$ is the free-space wavelength at the lowest operation frequency.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.