{"title":"Non-Archimedean integrals as limits of complex integrals","authors":"Antoine Ducros, E. Hrushovski, F. Loeser","doi":"10.1215/00127094-2022-0052","DOIUrl":null,"url":null,"abstract":"We explain how non-archimedean integrals considered by Chambert-Loir and Ducros naturally arise in asymptotics of families of complex integrals. To perform this analysis we work over a non-standard model of the field of complex numbers, which is endowed at the same time with an archimedean and a non-archimedean norm. Our main result states the existence of a natural morphism between bicomplexes of archimedean and non-archimedean forms which is compatible with integration.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0052","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
We explain how non-archimedean integrals considered by Chambert-Loir and Ducros naturally arise in asymptotics of families of complex integrals. To perform this analysis we work over a non-standard model of the field of complex numbers, which is endowed at the same time with an archimedean and a non-archimedean norm. Our main result states the existence of a natural morphism between bicomplexes of archimedean and non-archimedean forms which is compatible with integration.