Well-posedness and regularity for solutions of caputo stochastic fractional differential equations in Lp spaces

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
P. T. Huong, P. Kloeden, Doan Thai Son
{"title":"Well-posedness and regularity for solutions of caputo stochastic fractional differential equations in Lp spaces","authors":"P. T. Huong, P. Kloeden, Doan Thai Son","doi":"10.1080/07362994.2021.1988856","DOIUrl":null,"url":null,"abstract":"Abstract In the first part of this paper, we establish the well-posedness for solutions of Caputo stochastic fractional differential equations (for short Caputo SFDE) of order in Lp spaces with whose coefficients satisfy a standard Lipschitz condition. More precisely, we first show a result on the existence and uniqueness of solutions, next we show the continuous dependence of solutions on the initial values and on the fractional exponent α. The second part of this paper is devoted to studying the regularity in time for solutions of Caputo SFDE. As a consequence, we obtain that a solution of Caputo SFDE has a δ-Hölder continuous version for any The main ingredient in the proof is to use a temporally weighted norm and the Burkholder-Davis-Gundy inequality.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"1 - 15"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.1988856","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract In the first part of this paper, we establish the well-posedness for solutions of Caputo stochastic fractional differential equations (for short Caputo SFDE) of order in Lp spaces with whose coefficients satisfy a standard Lipschitz condition. More precisely, we first show a result on the existence and uniqueness of solutions, next we show the continuous dependence of solutions on the initial values and on the fractional exponent α. The second part of this paper is devoted to studying the regularity in time for solutions of Caputo SFDE. As a consequence, we obtain that a solution of Caputo SFDE has a δ-Hölder continuous version for any The main ingredient in the proof is to use a temporally weighted norm and the Burkholder-Davis-Gundy inequality.
Lp空间中caputo随机分式微分方程解的适定性和正则性
摘要在本文的第一部分中,我们建立了系数满足标准Lipschitz条件的Lp空间中阶Caputo随机分数阶微分方程(简称Caputo-SFDE)解的适定性。更准确地说,我们首先给出了解的存在性和唯一性的一个结果,然后我们给出了解对初值和分数指数α的连续依赖性。本文的第二部分致力于研究Caputo SFDE解的时间规律。因此,我们得到了Caputo-SFDE的解对于任何一个解都具有δ-Hölder连续版本。证明中的主要成分是使用时间加权范数和Burkholder-Davis-Gundy不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信