A Bayesian One-Sample Test for Proportion

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-12-01 DOI:10.3390/stats5040075
L. Al-Labadi, Yifan Cheng, Forough Fazeli-Asl, Kyuson Lim, Ya-Fang Weng
{"title":"A Bayesian One-Sample Test for Proportion","authors":"L. Al-Labadi, Yifan Cheng, Forough Fazeli-Asl, Kyuson Lim, Ya-Fang Weng","doi":"10.3390/stats5040075","DOIUrl":null,"url":null,"abstract":"This paper deals with a new Bayesian approach to the one-sample test for proportion. More specifically, let x=(x1,…,xn) be an independent random sample of size n from a Bernoulli distribution with an unknown parameter θ. For a fixed value θ0, the goal is to test the null hypothesis H0:θ=θ0 against all possible alternatives. The proposed approach is based on using the well-known formula of the Kullback–Leibler divergence between two binomial distributions chosen in a certain way. Then, the difference of the distance from a priori to a posteriori is compared through the relative belief ratio (a measure of evidence). Some theoretical properties of the method are developed. Examples and simulation results are included.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with a new Bayesian approach to the one-sample test for proportion. More specifically, let x=(x1,…,xn) be an independent random sample of size n from a Bernoulli distribution with an unknown parameter θ. For a fixed value θ0, the goal is to test the null hypothesis H0:θ=θ0 against all possible alternatives. The proposed approach is based on using the well-known formula of the Kullback–Leibler divergence between two binomial distributions chosen in a certain way. Then, the difference of the distance from a priori to a posteriori is compared through the relative belief ratio (a measure of evidence). Some theoretical properties of the method are developed. Examples and simulation results are included.
比例的贝叶斯单样本检验
本文讨论了一种新的贝叶斯比例单样本检验方法。更具体地说,设x=(x1,…,xn)是一个大小为n的独立随机样本,它来自一个参数为未知θ的伯努利分布。对于一个固定值θ0,目标是对所有可能的选择检验零假设H0:θ=θ0。所提出的方法是基于使用以某种方式选择的两个二项分布之间的著名的Kullback-Leibler散度公式。然后,通过相对相信比(一种证据度量)比较先验与后验距离的差异。给出了该方法的一些理论性质。给出了算例和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信