Enhancing the Thermal Dissipation in Batteries via Inclusion of Central Heat Sink

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY
A. Aryanfar, Fadi Elias, W. Goddard
{"title":"Enhancing the Thermal Dissipation in Batteries via Inclusion of Central Heat Sink","authors":"A. Aryanfar, Fadi Elias, W. Goddard","doi":"10.1115/1.4062712","DOIUrl":null,"url":null,"abstract":"\n The generation of heat within the rechargeable batteries during the charge–discharge cycles is inevitable, making heat dissipation a very critical part of their design and operation procedure, as a safety and sustainability measure. In particular, when the heat gets the least possibility to escape from the electrode surface, the boundary of the packaging material remains the sole heat dissipator. In this regard, the heat gets accumulated in the central zone, making it the most critical, since it has the least possibility to escape to the surroundings. Anticipating such a heat trap, a central heat sink component is devised, where the role of its conductivity and the relative scale is analyzed based on the formation of transient and steady-state temperature profiles. Additionally, an analytical solution is attained for the location of the maximum temperature, where its value and correlation with the electrolyte conductivity, heat generation rate, and scale of the cell have been quantified. Due to the existence of the curved boundaries, it is shown that the time versus space resolution for capturing the transient evolution of the temperature is more strict than the flat surface and analytically acquired as ≈33% smaller value. Such enhanced design and subsequent analysis are critical for planning sustainable and cost-effective packaging to avoid the ignition and failure of the respective electrolyte.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062712","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The generation of heat within the rechargeable batteries during the charge–discharge cycles is inevitable, making heat dissipation a very critical part of their design and operation procedure, as a safety and sustainability measure. In particular, when the heat gets the least possibility to escape from the electrode surface, the boundary of the packaging material remains the sole heat dissipator. In this regard, the heat gets accumulated in the central zone, making it the most critical, since it has the least possibility to escape to the surroundings. Anticipating such a heat trap, a central heat sink component is devised, where the role of its conductivity and the relative scale is analyzed based on the formation of transient and steady-state temperature profiles. Additionally, an analytical solution is attained for the location of the maximum temperature, where its value and correlation with the electrolyte conductivity, heat generation rate, and scale of the cell have been quantified. Due to the existence of the curved boundaries, it is shown that the time versus space resolution for capturing the transient evolution of the temperature is more strict than the flat surface and analytically acquired as ≈33% smaller value. Such enhanced design and subsequent analysis are critical for planning sustainable and cost-effective packaging to avoid the ignition and failure of the respective electrolyte.
通过包含中央散热器提高电池的散热性
充电电池在充放电循环过程中产生热量是不可避免的,散热作为一种安全和可持续的措施,是充电电池设计和运行过程中非常关键的一部分。特别是,当热量从电极表面逸出的可能性最小时,封装材料的边界仍然是唯一的散热体。在这方面,热量积聚在中心区域,使其成为最关键的,因为它有最小的可能性逃逸到周围环境。考虑到这样的热阱,设计了一个中央散热器组件,其中基于瞬态和稳态温度分布的形成,分析了其导电性和相对尺度的作用。此外,获得了最高温度位置的解析解,其中其值及其与电解质电导率,产热率和电池规模的关系已被量化。结果表明,由于曲面边界的存在,捕获温度瞬态演变的时间-空间分辨率比平面更严格,解析得到的值约小33%。这种增强的设计和随后的分析对于规划可持续和具有成本效益的封装至关重要,以避免各自电解质的着火和失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信