Transformation classification of human squat/sit-to-stand based on multichannel information fusion

IF 2.3 4区 计算机科学 Q2 Computer Science
Yu Wang, Quanjun Song, Tingting Ma, Yong Chen, HAO-BO Li, Rongkai Liu
{"title":"Transformation classification of human squat/sit-to-stand based on multichannel information fusion","authors":"Yu Wang, Quanjun Song, Tingting Ma, Yong Chen, HAO-BO Li, Rongkai Liu","doi":"10.1177/17298806221103708","DOIUrl":null,"url":null,"abstract":"In existing rehabilitation training, research on the accuracy of recognizing completed actions has achieved good results; however, the reduction in the misjudgment rate in the action conversion process needs further research. This article proposes a multichannel information fusion method for the movement conversion process of squat/sit-to-stand, which can help online movement conversion classification during rehabilitation training. We collected a training dataset from a total of eight subjects performing three different motions, including half squat, full squat, and sitting, equipped with plantar pressure sensors, RGB cameras, and five inertial measurement units. Our evaluation includes the misjudgment rate for each action and the time needed for classification. The experimental results show that, compared with the recognition of a single sensor, the accuracy after fusion can reach 96.6% in the case of no occlusion and 86.7% in the case of occlusion. Compared with the complete time window, the classification time window is shortened by approximately 25%.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221103708","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

In existing rehabilitation training, research on the accuracy of recognizing completed actions has achieved good results; however, the reduction in the misjudgment rate in the action conversion process needs further research. This article proposes a multichannel information fusion method for the movement conversion process of squat/sit-to-stand, which can help online movement conversion classification during rehabilitation training. We collected a training dataset from a total of eight subjects performing three different motions, including half squat, full squat, and sitting, equipped with plantar pressure sensors, RGB cameras, and five inertial measurement units. Our evaluation includes the misjudgment rate for each action and the time needed for classification. The experimental results show that, compared with the recognition of a single sensor, the accuracy after fusion can reach 96.6% in the case of no occlusion and 86.7% in the case of occlusion. Compared with the complete time window, the classification time window is shortened by approximately 25%.
基于多通道信息融合的人体蹲/坐-站变换分类
在现有的康复训练中,对完成动作识别准确性的研究取得了良好的效果;然而,动作转换过程中误判率的降低还有待进一步研究。本文提出了一种多通道信息融合方法,用于下蹲/坐到站的动作转换过程,有助于康复训练中的在线动作转换分类。我们从总共八名受试者中收集了一个训练数据集,他们进行了三种不同的运动,包括半蹲、全蹲和坐姿,配备了足底压力传感器、RGB相机和五个惯性测量单元。我们的评估包括每个动作的误判率和分类所需的时间。实验结果表明,与单个传感器的识别相比,在没有遮挡的情况下,融合后的准确率可以达到96.6%,在遮挡的情况中可以达到86.7%。与完整的时间窗口相比,分类时间窗口缩短了约25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信