ON HIGHER TORSION CLASSES

Pub Date : 2021-01-05 DOI:10.1017/nmj.2022.8
J. Asadollahi, Peter Jørgensen, Sibylle Schroll, H. Treffinger
{"title":"ON HIGHER TORSION CLASSES","authors":"J. Asadollahi, Peter Jørgensen, Sibylle Schroll, H. Treffinger","doi":"10.1017/nmj.2022.8","DOIUrl":null,"url":null,"abstract":"Abstract Building on the embedding of an n-abelian category \n$\\mathscr {M}$\n into an abelian category \n$\\mathcal {A}$\n as an n-cluster-tilting subcategory of \n$\\mathcal {A}$\n , in this paper, we relate the n-torsion classes of \n$\\mathscr {M}$\n with the torsion classes of \n$\\mathcal {A}$\n . Indeed, we show that every n-torsion class in \n$\\mathscr {M}$\n is given by the intersection of a torsion class in \n$\\mathcal {A}$\n with \n$\\mathscr {M}$\n . Moreover, we show that every chain of n-torsion classes in the n-abelian category \n$\\mathscr {M}$\n induces a Harder–Narasimhan filtration for every object of \n$\\mathscr {M}$\n . We use the relation between \n$\\mathscr {M}$\n and \n$\\mathcal {A}$\n to show that every Harder–Narasimhan filtration induced by a chain of n-torsion classes in \n$\\mathscr {M}$\n can be induced by a chain of torsion classes in \n$\\mathcal {A}$\n . Furthermore, we show that n-torsion classes are preserved by Galois covering functors, thus we provide a way to systematically construct new (chains of) n-torsion classes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Building on the embedding of an n-abelian category $\mathscr {M}$ into an abelian category $\mathcal {A}$ as an n-cluster-tilting subcategory of $\mathcal {A}$ , in this paper, we relate the n-torsion classes of $\mathscr {M}$ with the torsion classes of $\mathcal {A}$ . Indeed, we show that every n-torsion class in $\mathscr {M}$ is given by the intersection of a torsion class in $\mathcal {A}$ with $\mathscr {M}$ . Moreover, we show that every chain of n-torsion classes in the n-abelian category $\mathscr {M}$ induces a Harder–Narasimhan filtration for every object of $\mathscr {M}$ . We use the relation between $\mathscr {M}$ and $\mathcal {A}$ to show that every Harder–Narasimhan filtration induced by a chain of n-torsion classes in $\mathscr {M}$ can be induced by a chain of torsion classes in $\mathcal {A}$ . Furthermore, we show that n-torsion classes are preserved by Galois covering functors, thus we provide a way to systematically construct new (chains of) n-torsion classes.
分享
查看原文
关于高扭类
摘要本文在n-范畴$\mathscr{M}$作为$\mathcal{A}$的n-簇的子范畴嵌入到阿贝尔范畴$\math cal{A}$中的基础上,将$\mathscr{M}$的n-拓扑类与$\mathcal{A}$的扭转类联系起来。事实上,我们证明了$\mathscr{M}$中的每一个n-扭类都是由$\mathcal{a}$的扭类与$\mathscr{M}$的交集给出的。此外,我们还证明了n-贝利范畴$\mathscr{M}$中的每一个n-或子类链都会对$\mathscr{M}$的每一对象进行Harder–Narasimhan过滤。我们使用$\mathscr{M}$和$\mathcal{A}$之间的关系来证明,由$\mathscr{M}$中的一个n-扭类链诱导的每一个Harder–Narasimhan过滤都可以由$\math cal{A}$的一个扭转类链诱导。此外,我们证明了n向类是由Galois覆盖函子保留的,因此我们提供了一种系统地构造新的(链)n向类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信