Impact of the Cell Wall on Cyanide Biodegradation in the Model of the Respiratory Mechanism

IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY
V. Yakovliev, V. Ermakov, B. Lev
{"title":"Impact of the Cell Wall on Cyanide Biodegradation in the Model of the Respiratory Mechanism","authors":"V. Yakovliev, V. Ermakov, B. Lev","doi":"10.15407/ujpe68.2.113","DOIUrl":null,"url":null,"abstract":"Based on the general model of the respiratory mechanism of cyanide degradation by microorganisms, we introduce the impact of the cell wall on the degradation process under the conditions with and without the initial short-term pulsed electric field treatment. The research is conducted using non-linear phenomenological equations, and the solution approximation is obtained. Theoretical and experimental data are compared, and they are in good agreement. We demonstrate that the initial short-term pulsed electric field treatment increases the permeability of cyanide through the cell wall, as well as the rate of activation of the respiratory chains. The steady-state solutions and the maximum rate of cyanide addition are derived under the conditions that cyanide is continuously added to the solution with bacteria, and there is no initial pulsed electric field treatment.","PeriodicalId":23400,"journal":{"name":"Ukrainian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ujpe68.2.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the general model of the respiratory mechanism of cyanide degradation by microorganisms, we introduce the impact of the cell wall on the degradation process under the conditions with and without the initial short-term pulsed electric field treatment. The research is conducted using non-linear phenomenological equations, and the solution approximation is obtained. Theoretical and experimental data are compared, and they are in good agreement. We demonstrate that the initial short-term pulsed electric field treatment increases the permeability of cyanide through the cell wall, as well as the rate of activation of the respiratory chains. The steady-state solutions and the maximum rate of cyanide addition are derived under the conditions that cyanide is continuously added to the solution with bacteria, and there is no initial pulsed electric field treatment.
呼吸机制模型中细胞壁对氰化物生物降解的影响
基于微生物降解氰化物呼吸机制的一般模型,我们介绍了在有和没有初始短期脉冲电场处理的条件下,细胞壁对降解过程的影响。利用非线性唯象方程进行研究,得到了解的近似值。对理论数据和实验数据进行了比较,结果一致。我们证明,最初的短期脉冲电场处理增加了氰化物通过细胞壁的渗透性,以及呼吸链的激活率。在含细菌的溶液中连续加入氰化物,并且没有初始脉冲电场处理的条件下,导出了稳态溶液和氰化物的最大添加速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Journal of Physics
Ukrainian Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
20.00%
发文量
244
期刊介绍: Ukrainian Journal of Physics is the general physics edition of the Department of Physics and Astronomy of the National Academy of Sciences of Ukraine. The journal publishes original papers and reviews in the fields of experimental and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信