Orthogonal realizations of random sign patterns and other applications of the SIPP

IF 0.7 4区 数学 Q2 Mathematics
Zachary Brennan, Christopher Cox, Bryan A. Curtis, Enrique Gomez-Leos, Kimberly P. Hadaway, L. Hogben, Conor Thompson
{"title":"Orthogonal realizations of random sign patterns and other applications of the SIPP","authors":"Zachary Brennan, Christopher Cox, Bryan A. Curtis, Enrique Gomez-Leos, Kimberly P. Hadaway, L. Hogben, Conor Thompson","doi":"10.13001/ela.2023.7579","DOIUrl":null,"url":null,"abstract":"A sign pattern is an array with entries in $\\{+,-,0\\}$. A real matrix $Q$ is row orthogonal if $QQ^T = I$. The Strong Inner Product Property (SIPP), introduced in [B.A. Curtis and B.L. Shader, Sign patterns of orthogonal matrices and the strong inner product property, Linear Algebra Appl. 592: 228-259, 2020], is an important tool when determining whether a sign pattern allows row orthogonality because it guarantees there is a nearby matrix with the same property, allowing zero entries to be perturbed to nonzero entries, while preserving the sign of every nonzero entry. This paper uses the SIPP to initiate the study of conditions under which random sign patterns allow row orthogonality with high probability. Building on prior work, $5\\times n$ nowhere zero sign patterns that minimally allow orthogonality are determined. Conditions on zero entries in a sign pattern are established that guarantee any row orthogonal matrix with such a sign pattern has the SIPP.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7579","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A sign pattern is an array with entries in $\{+,-,0\}$. A real matrix $Q$ is row orthogonal if $QQ^T = I$. The Strong Inner Product Property (SIPP), introduced in [B.A. Curtis and B.L. Shader, Sign patterns of orthogonal matrices and the strong inner product property, Linear Algebra Appl. 592: 228-259, 2020], is an important tool when determining whether a sign pattern allows row orthogonality because it guarantees there is a nearby matrix with the same property, allowing zero entries to be perturbed to nonzero entries, while preserving the sign of every nonzero entry. This paper uses the SIPP to initiate the study of conditions under which random sign patterns allow row orthogonality with high probability. Building on prior work, $5\times n$ nowhere zero sign patterns that minimally allow orthogonality are determined. Conditions on zero entries in a sign pattern are established that guarantee any row orthogonal matrix with such a sign pattern has the SIPP.
随机符号模式的正交实现及SIPP的其他应用
符号模式是一个包含$\{+,-,0\}$的数组。一个实矩阵$Q$是行正交的,如果$QQ^T = I$。强内积性质(SIPP),在[B.A.Curtis和B.L. Shader,正交矩阵的符号模式和强内积性质,线性代数应用,592:228-259,2020],是确定符号模式是否允许行正交的重要工具,因为它保证了附近有一个具有相同性质的矩阵,允许零项被扰动到非零项,同时保留每个非零项的符号。本文利用SIPP开始研究随机符号模式允许高概率行正交的条件。在先前工作的基础上,确定了最小限度允许正交性的$5\乘以n$ nowhere零符号模式。建立了符号模式中零项的条件,保证具有这种符号模式的任何行正交矩阵具有SIPP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信