Adaptive action-prediction cortical learning algorithm under uncertain environments

Kazushi Fujino, Takeru Aoki, K. Takadama, Hiroyuki Sato
{"title":"Adaptive action-prediction cortical learning algorithm under uncertain environments","authors":"Kazushi Fujino, Takeru Aoki, K. Takadama, Hiroyuki Sato","doi":"10.3233/his-230013","DOIUrl":null,"url":null,"abstract":"The cortical learning algorithm (CLA) is a time series prediction algorithm. Memory elements called columns and cells discretely represent data with their state combinations, whereas linking elements called synapses change their state combinations. For tasks requiring to take actions, the action-prediction CLA (ACLA) has an advantage to complement missing state values with their predictions. However, an increase in the number of missing state values (i) generates excess synapses negatively affect the action predictions and (ii) decreases the stability of data representation and makes the output of action values difficult. This paper proposes an adaptive ACLA using (i) adaptive synapse adjustment and (ii) adaptive action-separated decoding in an uncertain environment, missing multiple input state values probabilistically. (i) The proposed adaptive synapse adjustment suppresses unnecessary synapses. (ii) The proposed adaptive action-separated decoding adaptively outputs an action prediction separately for each action value. Experimental results using uncertain two- and three-dimensional mountain car tasks show that the proposed adaptive ACLA achieves a more robust action prediction performance than the conventional ACLA, DDPG, and the three LSTM-assisted reinforcement learning algorithms of DDPG, TD3, and SAC, even though the number of missing state values and their frequencies increase. These results implicate that the proposed adaptive ACLA is a way to making decisions for the future, even in cases where information surrounding the situation partially lacked.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-230013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cortical learning algorithm (CLA) is a time series prediction algorithm. Memory elements called columns and cells discretely represent data with their state combinations, whereas linking elements called synapses change their state combinations. For tasks requiring to take actions, the action-prediction CLA (ACLA) has an advantage to complement missing state values with their predictions. However, an increase in the number of missing state values (i) generates excess synapses negatively affect the action predictions and (ii) decreases the stability of data representation and makes the output of action values difficult. This paper proposes an adaptive ACLA using (i) adaptive synapse adjustment and (ii) adaptive action-separated decoding in an uncertain environment, missing multiple input state values probabilistically. (i) The proposed adaptive synapse adjustment suppresses unnecessary synapses. (ii) The proposed adaptive action-separated decoding adaptively outputs an action prediction separately for each action value. Experimental results using uncertain two- and three-dimensional mountain car tasks show that the proposed adaptive ACLA achieves a more robust action prediction performance than the conventional ACLA, DDPG, and the three LSTM-assisted reinforcement learning algorithms of DDPG, TD3, and SAC, even though the number of missing state values and their frequencies increase. These results implicate that the proposed adaptive ACLA is a way to making decisions for the future, even in cases where information surrounding the situation partially lacked.
不确定环境下自适应动作预测皮质学习算法
皮层学习算法(CLA)是一种时间序列预测算法。被称为列和细胞的记忆元件用它们的状态组合离散地表示数据,而被称为突触的连接元件则改变它们的状态结合。对于需要采取行动的任务,行动预测CLA(ACLA)具有用其预测来补充缺失状态值的优势。然而,缺失状态值数量的增加(i)产生过量的突触,对动作预测产生负面影响,(ii)降低数据表示的稳定性,并使动作值的输出变得困难。本文提出了一种自适应ACLA,它使用(i)自适应突触调整和(ii)在不确定环境中的自适应动作分离解码,可能丢失多个输入状态值。(i) 所提出的自适应突触调节抑制了不必要的突触。(ii)所提出的自适应动作分离解码自适应地分别针对每个动作值输出动作预测。使用不确定的二维和三维山地车任务的实验结果表明,与传统的ACLA、DDPG以及DDPG、TD3和SAC这三种LSTM辅助强化学习算法相比,所提出的自适应ACLA实现了更稳健的动作预测性能,尽管缺失状态值的数量及其频率增加。这些结果表明,即使在部分缺乏有关情况的信息的情况下,所提出的自适应ACLA也是为未来做出决策的一种方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信