Experimental investigation and simulation of 3D printed sandwich structures with novel core topologies under bending loads

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
M. Eryildiz
{"title":"Experimental investigation and simulation of 3D printed sandwich structures with novel core topologies under bending loads","authors":"M. Eryildiz","doi":"10.1515/ipp-2022-4311","DOIUrl":null,"url":null,"abstract":"Abstract In a range of applications, such as the automotive, aerospace, and shipbuilding sectors, where weight reduction is essential, sandwich structures are getting more popular. The performance of sandwich structures in bending can be enhanced by using lightweight core topologies. In this study, six different novel and new core topologies were designed with CATIA V5. Polylactic acid (PLA) sandwich structures with new core designs were produced using the fused deposition modeling (FDM) additive manufacturing method. In order to determine the mechanical characteristics of these six designed core topologies, three-point bending tests on sandwich structures were performed. The influence of core topology on the flexural characteristics of lightweight sandwich structures was investigated to appropriately choose and design the core topology of the sandwich structures to meet desired structural requirements. To evaluate the flexural behavior of sandwich structures, finite element simulation using ANSYS Workbench 2021 R2 was also performed. Both the experimental data and simulation were in good agreement and clearly showed that the sandwich structure with the triple bow core exhibited the highest mechanical properties. These results provide new perspectives on the investigation of the mechanical response of sandwich structures, which can be beneficial for many other industries and applications.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"38 1","pages":"277 - 289"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4311","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In a range of applications, such as the automotive, aerospace, and shipbuilding sectors, where weight reduction is essential, sandwich structures are getting more popular. The performance of sandwich structures in bending can be enhanced by using lightweight core topologies. In this study, six different novel and new core topologies were designed with CATIA V5. Polylactic acid (PLA) sandwich structures with new core designs were produced using the fused deposition modeling (FDM) additive manufacturing method. In order to determine the mechanical characteristics of these six designed core topologies, three-point bending tests on sandwich structures were performed. The influence of core topology on the flexural characteristics of lightweight sandwich structures was investigated to appropriately choose and design the core topology of the sandwich structures to meet desired structural requirements. To evaluate the flexural behavior of sandwich structures, finite element simulation using ANSYS Workbench 2021 R2 was also performed. Both the experimental data and simulation were in good agreement and clearly showed that the sandwich structure with the triple bow core exhibited the highest mechanical properties. These results provide new perspectives on the investigation of the mechanical response of sandwich structures, which can be beneficial for many other industries and applications.
新型芯拓扑三维打印夹层结构在弯曲载荷作用下的实验研究与仿真
摘要在一系列应用中,如汽车、航空航天和造船行业,减重至关重要,夹层结构越来越受欢迎。夹层结构的弯曲性能可以通过使用轻质核心拓扑结构来提高。在本研究中,使用CATIA V5设计了六种不同的新型核心拓扑。采用熔融沉积建模(FDM)增材制造方法生产了具有新芯设计的聚乳酸(PLA)夹层结构。为了确定这六种设计的核心拓扑结构的力学特性,对夹层结构进行了三点弯曲试验。研究了芯拓扑结构对轻质夹层结构弯曲特性的影响,以适当选择和设计夹层结构的芯拓扑结构,满足所需的结构要求。为了评估夹层结构的弯曲性能,还使用ANSYS Workbench 2021 R2进行了有限元模拟。实验数据和模拟结果一致,清楚地表明具有三弓形芯的夹层结构表现出最高的力学性能。这些结果为夹层结构的力学响应研究提供了新的视角,对许多其他行业和应用都有好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信