{"title":"Incorporating Cyano Groups to a Conjugated Polymer Based on Double B←N-Bridged Bipyridine Units for Unipolar n-Type Organic Field-Effect Transistors","authors":"Xumin Cao, Yang Min, H. Tian, Jun Liu","doi":"10.1055/a-1639-2383","DOIUrl":null,"url":null,"abstract":"Abstract The development of n-type semiconductors lags far behind that of their p-type counterparts, demonstrating the exploration of exclusive n-type π-conjugated polymers is significant. The double B←N-bridged bipyridine (BNBP)-based polymers P-BNBP-TVT containing (E)-1,2-di(thiophen-2-yl)ethene (TVT) previously reported exhibits ambipolar character because of the electron-rich nature. Herein, we incorporated strong electron-withdrawing cyano groups into the 3,3′-positions of the TVT moiety to a copolymer P-BNBP-2CNTVT to develop n-type π-conjugated polymers. The LUMO/HOMO energy levels of P-BNBP-2CNTVT are −3.80/−5.95 eV, respectively, which are ~0.4 eV lower than that of P-BNBP-TVT without cyano groups. Unsurprisingly, compared with ambipolar P-BNBP-TVT, the organic field-effect transistors (OFETs) based on P-BNBP-2CNTVT showed unipolar n-type characteristics with an electron mobility of 0.026 cm2 · V−1 · s−1 and a lower threshold voltage of ~25 V as well as high I on/I off of ~105. This study demonstrates that organoboron π-conjugated polymers could be regarded as a tool for constructing exclusive n-type semiconducting polymers used in OFETs.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"3 1","pages":"469 - 476"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-1639-2383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The development of n-type semiconductors lags far behind that of their p-type counterparts, demonstrating the exploration of exclusive n-type π-conjugated polymers is significant. The double B←N-bridged bipyridine (BNBP)-based polymers P-BNBP-TVT containing (E)-1,2-di(thiophen-2-yl)ethene (TVT) previously reported exhibits ambipolar character because of the electron-rich nature. Herein, we incorporated strong electron-withdrawing cyano groups into the 3,3′-positions of the TVT moiety to a copolymer P-BNBP-2CNTVT to develop n-type π-conjugated polymers. The LUMO/HOMO energy levels of P-BNBP-2CNTVT are −3.80/−5.95 eV, respectively, which are ~0.4 eV lower than that of P-BNBP-TVT without cyano groups. Unsurprisingly, compared with ambipolar P-BNBP-TVT, the organic field-effect transistors (OFETs) based on P-BNBP-2CNTVT showed unipolar n-type characteristics with an electron mobility of 0.026 cm2 · V−1 · s−1 and a lower threshold voltage of ~25 V as well as high I on/I off of ~105. This study demonstrates that organoboron π-conjugated polymers could be regarded as a tool for constructing exclusive n-type semiconducting polymers used in OFETs.