A Mixture of Regular Vines for Multiple Dependencies

IF 1 Q3 STATISTICS & PROBABILITY
F. Alanazi
{"title":"A Mixture of Regular Vines for Multiple Dependencies","authors":"F. Alanazi","doi":"10.1155/2021/5559518","DOIUrl":null,"url":null,"abstract":"To uncover complex hidden dependency structures among variables, researchers have used a mixture of vine copula constructions. To date, these have been limited to a subclass of regular vine models, the so-called drawable vine, fitting only one type of bivariate copula for all variable pairs. However, the variation of complex hidden correlations from one pair of variables to another is more likely to be present in many real datasets. Single-type bivariate copulas are unable to deal with such a problem. In addition, the regular vine copula model is much more capable and flexible than its subclasses. Hence, to fully uncover and describe complex hidden dependency structures among variables and provide even further flexibility to the mixture of regular vine models, a mixture of regular vine models, with a mixed choice of bivariate copulas, is proposed in this paper. The model was applied to simulated and real data to illustrate its performance. The proposed model shows significant performance over the mixture of R-vine densities with a single copula family fitted to all pairs.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"2021 1","pages":"1-15"},"PeriodicalIF":1.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5559518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

To uncover complex hidden dependency structures among variables, researchers have used a mixture of vine copula constructions. To date, these have been limited to a subclass of regular vine models, the so-called drawable vine, fitting only one type of bivariate copula for all variable pairs. However, the variation of complex hidden correlations from one pair of variables to another is more likely to be present in many real datasets. Single-type bivariate copulas are unable to deal with such a problem. In addition, the regular vine copula model is much more capable and flexible than its subclasses. Hence, to fully uncover and describe complex hidden dependency structures among variables and provide even further flexibility to the mixture of regular vine models, a mixture of regular vine models, with a mixed choice of bivariate copulas, is proposed in this paper. The model was applied to simulated and real data to illustrate its performance. The proposed model shows significant performance over the mixture of R-vine densities with a single copula family fitted to all pairs.
具有多个依赖关系的正则Vine的混合
为了揭示变量之间复杂的隐藏依赖结构,研究人员混合使用了vine copula结构。到目前为止,这些模型仅限于正则葡萄藤模型的一个子类,即所谓的可绘制葡萄藤,仅适用于所有变量对的一种类型的二元系词。然而,从一对变量到另一对变量的复杂隐藏相关性的变化更可能出现在许多真实数据集中。单一类型的二元系词无法处理这样的问题。此外,常规藤copula模型比它的子类更有能力和灵活性。因此,为了充分揭示和描述变量之间复杂的隐藏依赖结构,并为规则藤模型的混合提供更大的灵活性,本文提出了一种混合选择二变量系词的规则藤模型。将该模型应用于模拟数据和实际数据,以说明其性能。所提出的模型在R藤密度的混合上表现出显著的性能,其中单个交配家族适合所有配对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信