A REALIZATION OF THE ENVELOPING SUPERALGEBRA $ {\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$

Pub Date : 2021-09-09 DOI:10.1017/nmj.2021.11
J. Du, Qiang Fu, Yanan Lin
{"title":"A REALIZATION OF THE ENVELOPING SUPERALGEBRA \n$ {\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$","authors":"J. Du, Qiang Fu, Yanan Lin","doi":"10.1017/nmj.2021.11","DOIUrl":null,"url":null,"abstract":"Abstract In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum \n$\\mathfrak {gl}_n$\n via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n of the loop algebra \n$\\widehat {\\mathfrak {gl}}_{m|n}$\n of \n${\\mathfrak {gl}}_{m|n}$\n with those of affine symmetric groups \n${\\widehat {{\\mathfrak S}}_{r}}$\n . Then, we give a BLM type realization of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n via affine Schur superalgebras. The first application of the realization of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n is to determine the action of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n on tensor spaces of the natural representation of \n$\\widehat {\\mathfrak {gl}}_{m|n}$\n . These results in epimorphisms from \n$\\;{\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n to affine Schur superalgebras so that the bridging relation between representations of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n and \n${\\widehat {{\\mathfrak S}}_{r}}$\n is established. As a second application, we construct a Kostant type \n$\\mathbb Z$\n -form for \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum $\mathfrak {gl}_n$ via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ of the loop algebra $\widehat {\mathfrak {gl}}_{m|n}$ of ${\mathfrak {gl}}_{m|n}$ with those of affine symmetric groups ${\widehat {{\mathfrak S}}_{r}}$ . Then, we give a BLM type realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ via affine Schur superalgebras. The first application of the realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ is to determine the action of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ on tensor spaces of the natural representation of $\widehat {\mathfrak {gl}}_{m|n}$ . These results in epimorphisms from $\;{\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ to affine Schur superalgebras so that the bridging relation between representations of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ and ${\widehat {{\mathfrak S}}_{r}}$ is established. As a second application, we construct a Kostant type $\mathbb Z$ -form for ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.
分享
查看原文
包络超代数$ {\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$的实现
摘要在[2]中,Beilinson–Lusztig–MacPherson(BLM)为量子$\mathfrak给出了一个漂亮的实现{gl}_n$通过量子Schur代数的几何设置。我们引入了仿射Schur超代数的概念,并用它们作为连接环代数$\mathfrak{gl}_{m|n}$的泛包络超代数${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}}_{m | n})$的结构和表示与仿射对称群${\math frak S}_。然后,我们通过仿射Schur超代数给出了${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}}_{m|n})$的BLM型实现。实现${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}_{m|n})$的第一个应用是确定${\math U}_{\mathbb Q}的作用(\wideshat{\math frak{gl}_{m | n}。这些结果导致$\;{\mathcal U}_{\math bb Q}(\mathfrak S})_{r}$的表示之间的桥接关系。作为第二个应用,我们为${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}}_{m|n})$构造了一个Kostant型$\mathbb Z$形式,其在上述差向同构下的图像正是积分仿射Schur超代数。通过这种方式,我们本质上获得了具有任意特征的超仿射Schur–Weyl对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信