An Invariance and Closed Form Analysis of the Nonlinear Biharmonic Beam Equation

IF 0.5 Q3 MATHEMATICS
Y. Masood, A. Kara, F. Zaman
{"title":"An Invariance and Closed Form Analysis of the Nonlinear Biharmonic Beam Equation","authors":"Y. Masood, A. Kara, F. Zaman","doi":"10.47836/mjms.17.2.09","DOIUrl":null,"url":null,"abstract":"In this paper, we study the one-parameter Lie groups of point transformations that leave invariant the biharmonic partial differential equation (PDE) uxxxx+2uxxyy+uyyyy=f(u)\n. To this end, we construct the Lie and Noether symmetry generators and present reductions of biharmonic PDE. When f is arbitrary function of u, we obtain the solution of biharmonic equation in terms of Green function. The equation is further analysed when f\n is exponential function and for general power law. Furthermore, we use Noether's theorem and the 'multiplier approach' to construct conservation laws of the PDE.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.17.2.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the one-parameter Lie groups of point transformations that leave invariant the biharmonic partial differential equation (PDE) uxxxx+2uxxyy+uyyyy=f(u) . To this end, we construct the Lie and Noether symmetry generators and present reductions of biharmonic PDE. When f is arbitrary function of u, we obtain the solution of biharmonic equation in terms of Green function. The equation is further analysed when f is exponential function and for general power law. Furthermore, we use Noether's theorem and the 'multiplier approach' to construct conservation laws of the PDE.
非线性双调和梁方程的一个不变性和闭式分析
本文研究了双调和偏微分方程(PDE) uxxxx+ 2uxxxx +uyyyy=f(u)时保持不变的单参数点变换李群。为此,我们构造了Lie和Noether对称发生器,并给出了双谐波偏微分方程的约简。当f是u的任意函数时,我们得到了双调和方程用格林函数表示的解。进一步分析了f为指数函数和一般幂律时的方程。此外,我们利用诺特定理和“乘数法”构造了偏微分方程的守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信