On the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality

IF 0.1 Q4 STATISTICS & PROBABILITY
Saeed Darijani, H. Zakerzadeh, H. Torabi
{"title":"On the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality","authors":"Saeed Darijani, H. Zakerzadeh, H. Torabi","doi":"10.52547/JIRSS.19.2.119","DOIUrl":null,"url":null,"abstract":". It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace transform and empirical characteristic function, respectively, using the canonical form of the MSN distribution. Applications with Monte Carlo simulations and real-life data examples are reported to illustrate the usefulness of the new tests.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/JIRSS.19.2.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace transform and empirical characteristic function, respectively, using the canonical form of the MSN distribution. Applications with Monte Carlo simulations and real-life data examples are reported to illustrate the usefulness of the new tests.
多元偏正态的基于规范的拟合优度检验
. 众所周知,斜正态分布可以为非对称数据的分析提供一种替代正态分布的模型。本文的目的是提出两个拟合优度检验来评估样本是否来自多元偏正态分布。我们利用MSN分布的标准形式,分别基于经验拉普拉斯变换和经验特征函数,解决了多元偏正态拟合优度问题。用蒙特卡罗模拟和实际数据实例说明了新测试的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信