{"title":"Diagnosing COVID-19 from Chest CT Scan Images using Deep Learning Models","authors":"Shamik Tiwari","doi":"10.4018/ijrqeh.299961","DOIUrl":null,"url":null,"abstract":"A novel coronavirus named COVID-19 has spread speedily and has triggered a worldwide outbreak of respiratory illness. Early diagnosis is always crucial for pandemic control. Compared to RT-PCR, chest computed tomography (CT) imaging is the more consistent, concrete, and prompt method to identify COVID-19 patients. For clinical diagnostics, the information received from computed tomography scans is critical. So there is a need to develop an image analysis technique for detecting viral epidemics from computed tomography scan pictures. Using DenseNet, ResNet, CapsNet, and 3D-ConvNet, four deep machine learning-based architectures have been proposed for COVID-19 diagnosis from chest computed tomography scans. From the experimental results, it is found that all the architectures are providing effective accuracy, of which the COVID-DNet model has reached the highest accuracy of 99%. Proposed architectures are accessible at https://github.com/shamiktiwari/CTscanCovi19 can be utilized to support radiologists and reserachers in validating their initial screening.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrqeh.299961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 1
Abstract
A novel coronavirus named COVID-19 has spread speedily and has triggered a worldwide outbreak of respiratory illness. Early diagnosis is always crucial for pandemic control. Compared to RT-PCR, chest computed tomography (CT) imaging is the more consistent, concrete, and prompt method to identify COVID-19 patients. For clinical diagnostics, the information received from computed tomography scans is critical. So there is a need to develop an image analysis technique for detecting viral epidemics from computed tomography scan pictures. Using DenseNet, ResNet, CapsNet, and 3D-ConvNet, four deep machine learning-based architectures have been proposed for COVID-19 diagnosis from chest computed tomography scans. From the experimental results, it is found that all the architectures are providing effective accuracy, of which the COVID-DNet model has reached the highest accuracy of 99%. Proposed architectures are accessible at https://github.com/shamiktiwari/CTscanCovi19 can be utilized to support radiologists and reserachers in validating their initial screening.