Irreducibility of extensions of Laguerre polynomials

IF 0.5 Q3 MATHEMATICS
S. Laishram, Saranya G. Nair, T. Shorey
{"title":"Irreducibility of extensions of Laguerre polynomials","authors":"S. Laishram, Saranya G. Nair, T. Shorey","doi":"10.7169/facm/1748","DOIUrl":null,"url":null,"abstract":"For integers $a_0,a_1,\\ldots,a_n$ with $|a_0a_n|=1$ and either $\\alpha =u$ with $1\\leq u \\leq 50$ or $\\alpha=u+ \\frac{1}{2}$ with $1 \\leq u \\leq 45$, we prove that $\\psi_n^{(\\alpha)}(x;a_0,a_1,\\cdots,a_n)$ is irreducible except for an explicit finite set of pairs $(u,n)$. Furthermore all the exceptions other than $n=2^{12},\\alpha=89/2$ are necessary. The above result with $0\\leq\\alpha \\leq 10$ is due to Filaseta, Finch and Leidy and with $\\alpha \\in \\{-1/2,1/2\\}$ due to Schur.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

For integers $a_0,a_1,\ldots,a_n$ with $|a_0a_n|=1$ and either $\alpha =u$ with $1\leq u \leq 50$ or $\alpha=u+ \frac{1}{2}$ with $1 \leq u \leq 45$, we prove that $\psi_n^{(\alpha)}(x;a_0,a_1,\cdots,a_n)$ is irreducible except for an explicit finite set of pairs $(u,n)$. Furthermore all the exceptions other than $n=2^{12},\alpha=89/2$ are necessary. The above result with $0\leq\alpha \leq 10$ is due to Filaseta, Finch and Leidy and with $\alpha \in \{-1/2,1/2\}$ due to Schur.
Laguerre多项式扩张的不可约性
对于整数$a_0,a_1,\ldots,a_n$与$|a_0a_n|=1$, $\alpha =u$与$1\leq u \leq 50$或$\alpha=u+ \frac{1}{2}$与$1 \leq u \leq 45$,我们证明了$\psi_n^{(\alpha)}(x;a_0,a_1,\cdots,a_n)$除了一个显式有限对集$(u,n)$外是不可约的。此外,除了$n=2^{12},\alpha=89/2$之外的所有例外都是必要的。上面的结果与$0\leq\alpha \leq 10$是由于Filaseta、Finch和Leidy,与$\alpha \in \{-1/2,1/2\}$是由于Schur。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信