Physical Limits of Computation

Tibor Guba, L. Nánai, T. George
{"title":"Physical Limits of Computation","authors":"Tibor Guba, L. Nánai, T. George","doi":"10.4236/JQIS.2017.74012","DOIUrl":null,"url":null,"abstract":"The paper deals with theoretical treatment of physical limits for computation. We are using some statements on base of min energy/bit, power delay product, Shannon entropy and Heisenberg uncertainty principle which result in about kTln(2) energy for a bit of information.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"07 1","pages":"155-159"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2017.74012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with theoretical treatment of physical limits for computation. We are using some statements on base of min energy/bit, power delay product, Shannon entropy and Heisenberg uncertainty principle which result in about kTln(2) energy for a bit of information.
计算的物理极限
本文讨论了计算中物理极限的理论处理。我们使用了一些基于最小能量/比特、功率延迟乘积、香农熵和海森堡不确定性原理的陈述,这些陈述导致了一比特信息的大约kTln(2)能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信