{"title":"In Situ Rb-Sr Dating Of Lunar Meteorites Using Laser Ablation MC-ICP-MS","authors":"Wen Zhang","doi":"10.46770/as.2022.007","DOIUrl":null,"url":null,"abstract":": Plagioclase, pyroxene and glass are the main component phases of different planetary materials. In situ Rb-Sr dating of these common phases thus would represent the timing of magmatic differentiation, effectively complementary to the rare, tiny U-Pb bearing phases that only form at a late stage. In this study, we selected lunar meteorites as examples to establish an i n situ Rb-Sr dating method where plagioclase, pyroxene, ilmenite, and glasses were the laser-ablation (LA) targets. The accuracy of 87 Sr/ 86 Sr and 87 Rb/ 86 Sr measured by LA-MC-ICP-MS was better than 0.2 ‰ and 3 %, respectively, for samples with an 87 Rb/ 86 Sr ratio lower than 1. However, we found that the distributions of Rb and Sr in the natural materials were heterogeneous at the micrometer scale, leading to inaccurate 87 Rb/ 86 Sr ratio correction when calculated by normal data reduction methods. A new data reduction strategy of the smallest unit of isochron age (SUIA) was developed. Using the SUIA, the Rb-Sr isochron age of 2984 ± 43 Ma and 3149 ± 20 Ma was obtained for two lunar meteorites (NWA 10597 and NWA 6950, respectively). These results are identical within 1-2% deviation relative to the U-Pb dating ages for baddeleyite and apatite using SIMS. The present method may have broad applicability for determining the Rb-Sr isochron ages of other planetary samples.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.007","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 5
Abstract
: Plagioclase, pyroxene and glass are the main component phases of different planetary materials. In situ Rb-Sr dating of these common phases thus would represent the timing of magmatic differentiation, effectively complementary to the rare, tiny U-Pb bearing phases that only form at a late stage. In this study, we selected lunar meteorites as examples to establish an i n situ Rb-Sr dating method where plagioclase, pyroxene, ilmenite, and glasses were the laser-ablation (LA) targets. The accuracy of 87 Sr/ 86 Sr and 87 Rb/ 86 Sr measured by LA-MC-ICP-MS was better than 0.2 ‰ and 3 %, respectively, for samples with an 87 Rb/ 86 Sr ratio lower than 1. However, we found that the distributions of Rb and Sr in the natural materials were heterogeneous at the micrometer scale, leading to inaccurate 87 Rb/ 86 Sr ratio correction when calculated by normal data reduction methods. A new data reduction strategy of the smallest unit of isochron age (SUIA) was developed. Using the SUIA, the Rb-Sr isochron age of 2984 ± 43 Ma and 3149 ± 20 Ma was obtained for two lunar meteorites (NWA 10597 and NWA 6950, respectively). These results are identical within 1-2% deviation relative to the U-Pb dating ages for baddeleyite and apatite using SIMS. The present method may have broad applicability for determining the Rb-Sr isochron ages of other planetary samples.
期刊介绍:
The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.