PCSVD: A hybrid feature extraction technique based on principal component analysis and singular value decomposition

Vineeta Gulati, Neeraj Raheja
{"title":"PCSVD: A hybrid feature extraction technique based on principal component analysis and singular value decomposition","authors":"Vineeta Gulati, Neeraj Raheja","doi":"10.32629/jai.v6i2.586","DOIUrl":null,"url":null,"abstract":"Feature extraction plays an important role in accurate preprocessing and real-world applications. High-dimensional features in the data have a significant impact on the machine learning classification system. Relevant feature extraction is a fundamental step not only to reduce the dimensionality but also to improve the performance of the classifier. In this paper, the author proposes a hybrid dimensionality reduction technique using principal component analysis (PCA) and singular value decomposition (SVD) in a machine classification system with a support vector classifier (SVC). To evaluate the performance of PCSVD, the results are compared without using feature extraction techniques or with existing methods of independent component analysis (ICA), PCA, linear discriminant analysis (LDA), and SVD. In addition, the efficiency of the PCSVD method is measured on an increased scale of 1.54% accuracy, 2.70% sensitivity, 3.71% specificity, and 3.58% precision. In addition, reduce the 15% dimensionality and 40.60% RMSE, which are better than existing techniques found in the literature.","PeriodicalId":70721,"journal":{"name":"自主智能(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.32629/jai.v6i2.586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature extraction plays an important role in accurate preprocessing and real-world applications. High-dimensional features in the data have a significant impact on the machine learning classification system. Relevant feature extraction is a fundamental step not only to reduce the dimensionality but also to improve the performance of the classifier. In this paper, the author proposes a hybrid dimensionality reduction technique using principal component analysis (PCA) and singular value decomposition (SVD) in a machine classification system with a support vector classifier (SVC). To evaluate the performance of PCSVD, the results are compared without using feature extraction techniques or with existing methods of independent component analysis (ICA), PCA, linear discriminant analysis (LDA), and SVD. In addition, the efficiency of the PCSVD method is measured on an increased scale of 1.54% accuracy, 2.70% sensitivity, 3.71% specificity, and 3.58% precision. In addition, reduce the 15% dimensionality and 40.60% RMSE, which are better than existing techniques found in the literature.
PCSVD:一种基于主成分分析和奇异值分解的混合特征提取技术
特征提取在精确预处理和实际应用中起着重要的作用。数据中的高维特征对机器学习分类系统有着重要的影响。相关特征提取是降低分类器维数和提高分类器性能的基础步骤。本文提出了一种基于主成分分析(PCA)和奇异值分解(SVD)的混合降维技术,用于支持向量分类器(SVC)的机器分类系统。为了评估PCSVD的性能,在不使用特征提取技术的情况下,将结果与现有的独立成分分析(ICA)、主成分分析(PCA)、线性判别分析(LDA)和奇异值分析(SVD)方法进行比较。PCSVD方法的准确度为1.54%,灵敏度为2.70%,特异度为3.71%,精密度为3.58%。此外,降低了15%的维数和40.60%的RMSE,优于文献中现有的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信