{"title":"Inequalities for Synchronous Functions and Applications","authors":"S. Dragomir","doi":"10.33205/CMA.562166","DOIUrl":null,"url":null,"abstract":"Some inequalities for synchronous functions that are a mixture between Cebysev’s and Jensen's inequality are provided. Applications for $f$ -divergence measure and some particular instances including Kullback-Leibler divergence, Jeffreys divergence and $\\chi ^{2}$-divergence are also given.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/CMA.562166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
Some inequalities for synchronous functions that are a mixture between Cebysev’s and Jensen's inequality are provided. Applications for $f$ -divergence measure and some particular instances including Kullback-Leibler divergence, Jeffreys divergence and $\chi ^{2}$-divergence are also given.