Phase portraits of two classes of quadratic differential systems exhibiting as solutions two cubic algebraic curves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
R. Benterki, Ahlam Belfar
{"title":"Phase portraits of two classes of quadratic differential systems exhibiting as solutions two cubic algebraic curves","authors":"R. Benterki, Ahlam Belfar","doi":"10.1515/dema-2022-0218","DOIUrl":null,"url":null,"abstract":"Abstract The classification of the phase portraits is one of the classical and difficult problems in the qualitative theory of polynomial differential systems in R 2 {{\\mathbb{R}}}^{2} , particularly for quadratic systems. Even with the hundreds of studies on the topology of real planar quadratic vector fields, fully characterizing their phase portraits is still a difficult problem. This paper is devoted to classifying the phase portraits of two polynomial vector fields with two usual invariant algebraic curves, by investigating the geometric solutions within the Poincaré disc. One can notice that these systems yield 26 topologically different phase portraits.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The classification of the phase portraits is one of the classical and difficult problems in the qualitative theory of polynomial differential systems in R 2 {{\mathbb{R}}}^{2} , particularly for quadratic systems. Even with the hundreds of studies on the topology of real planar quadratic vector fields, fully characterizing their phase portraits is still a difficult problem. This paper is devoted to classifying the phase portraits of two polynomial vector fields with two usual invariant algebraic curves, by investigating the geometric solutions within the Poincaré disc. One can notice that these systems yield 26 topologically different phase portraits.
以两条三次代数曲线为解的两类二次微分系统的相图
相位肖像的分类是r2 {{\mathbb{R}}}^{2}中多项式微分系统定性理论中经典而又困难的问题之一,特别是对于二次系统。尽管对实际平面二次向量场的拓扑结构进行了大量的研究,但充分表征它们的相位肖像仍然是一个难题。本文通过研究庞卡罗圆盘内的几何解,研究了具有两种常不变代数曲线的多项式向量场的相图分类。我们可以注意到这些系统产生26个拓扑不同的相位图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信