An approximate approach to the structured distance to normality of Toeplitz operators

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Elahe Bolourchian, B. A. Kakavandi
{"title":"An approximate approach to the structured distance to normality of Toeplitz operators","authors":"Elahe Bolourchian, B. A. Kakavandi","doi":"10.1090/QAM/1589","DOIUrl":null,"url":null,"abstract":"<p>A classical theorem from Brown and Halmos asserts that a Toeplitz operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is normal if and only if the range of its generator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon double-struck upper T right-arrow double-struck upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f:\\mathbb {T}\\rightarrow \\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is included in a straight line. In this paper, discretizing <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis double-struck upper T right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f(\\mathbb {T})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and using the Principal Component Analysis method to project it onto a ‘best’ line segment in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-norm, we propose a numerical method to find the nearest normal Toeplitz operator from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the norm <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue StartAbsoluteValue StartAbsoluteValue upper T left-parenthesis f right-parenthesis EndAbsoluteValue EndAbsoluteValue EndAbsoluteValue colon-equal double-vertical-bar f double-vertical-bar Subscript upper L squared left-parenthesis double-struck upper T right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow>\n <mml:mo>|</mml:mo>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mrow>\n <mml:mo>|</mml:mo>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mrow>\n <mml:mo>|</mml:mo>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mo>|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mo>|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-REL\">\n <mml:mo>≔</mml:mo>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>f</mml:mi>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\left \\vert \\kern -0.25ex\\left \\vert \\kern -0.25ex\\left \\vert T(f)\\right \\vert \\kern -0.25ex\\right \\vert \\kern -0.25ex\\right \\vert }\\coloneq \\Vert f \\Vert _{L^2(\\mathbb {T})}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is weaker than the operator norm. Besides, we introduce an <italic>index</italic> for the distance from normality of Toeplitz operators which is invariant under the transformations <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f right-arrow from bar a f plus b\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>a</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\mapsto a f+b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a element-of double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a\\in \\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b element-of double-struck upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b \\in \\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a not-equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a\\neq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/QAM/1589","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A classical theorem from Brown and Halmos asserts that a Toeplitz operator T ( f ) T(f) is normal if and only if the range of its generator f : T C f:\mathbb {T}\rightarrow \mathbb {C} is included in a straight line. In this paper, discretizing f ( T ) f(\mathbb {T}) and using the Principal Component Analysis method to project it onto a ‘best’ line segment in L 2 L^2 -norm, we propose a numerical method to find the nearest normal Toeplitz operator from T ( f ) T(f) in the norm | | | T ( f ) | | | f L 2 ( T ) {\left \vert \kern -0.25ex\left \vert \kern -0.25ex\left \vert T(f)\right \vert \kern -0.25ex\right \vert \kern -0.25ex\right \vert }\coloneq \Vert f \Vert _{L^2(\mathbb {T})} which is weaker than the operator norm. Besides, we introduce an index for the distance from normality of Toeplitz operators which is invariant under the transformations f a f + b f\mapsto a f+b for all a R a\in \mathbb {R} and b C b \in \mathbb {C} with a 0 a\neq 0 .

Toeplitz算子到正态结构距离的一种近似方法
Brown和Halmos的一个经典定理断言Toeplitz算子T(f)T(f→ Cf:\mathbb{T}\rightarrow\mathbb{C}包含在一条直线中。本文将f(T)f(\mathbb{T})离散化,并用主成分分析法将其投影到L2 L^2-范数中的“最佳”线段上,我们提出了一种从范数中的T(f)T(f{\left \vert\kern-0.25ex\left \vert\kern-0.25ex\left \ vert T(f)\right \vert\ kern-0.25ex \right \vert}\coloneq\vert f\vert _{L^2(\mathbb{T})}操作员规范。此外,我们还引入了Toeplitz算子离正规态距离的一个指标,它在变换f下是不变的↦ 对于a≠0的所有a∈R a \in\mathbb{R}和b∈C b \in\math bb{C},a f+b f\映射到a f+b。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信