{"title":"An approximate approach to the structured distance to normality of Toeplitz operators","authors":"Elahe Bolourchian, B. A. Kakavandi","doi":"10.1090/QAM/1589","DOIUrl":null,"url":null,"abstract":"<p>A classical theorem from Brown and Halmos asserts that a Toeplitz operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is normal if and only if the range of its generator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon double-struck upper T right-arrow double-struck upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f:\\mathbb {T}\\rightarrow \\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is included in a straight line. In this paper, discretizing <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis double-struck upper T right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f(\\mathbb {T})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and using the Principal Component Analysis method to project it onto a ‘best’ line segment in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-norm, we propose a numerical method to find the nearest normal Toeplitz operator from <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the norm <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue StartAbsoluteValue StartAbsoluteValue upper T left-parenthesis f right-parenthesis EndAbsoluteValue EndAbsoluteValue EndAbsoluteValue colon-equal double-vertical-bar f double-vertical-bar Subscript upper L squared left-parenthesis double-struck upper T right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow>\n <mml:mo>|</mml:mo>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mrow>\n <mml:mo>|</mml:mo>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mrow>\n <mml:mo>|</mml:mo>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mo>|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"-0.25ex\" />\n <mml:mo>|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-REL\">\n <mml:mo>≔</mml:mo>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>f</mml:mi>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\left \\vert \\kern -0.25ex\\left \\vert \\kern -0.25ex\\left \\vert T(f)\\right \\vert \\kern -0.25ex\\right \\vert \\kern -0.25ex\\right \\vert }\\coloneq \\Vert f \\Vert _{L^2(\\mathbb {T})}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is weaker than the operator norm. Besides, we introduce an <italic>index</italic> for the distance from normality of Toeplitz operators which is invariant under the transformations <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f right-arrow from bar a f plus b\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>a</mml:mi>\n <mml:mi>f</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\mapsto a f+b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a element-of double-struck upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a\\in \\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b element-of double-struck upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b \\in \\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a not-equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>a</mml:mi>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">a\\neq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/QAM/1589","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A classical theorem from Brown and Halmos asserts that a Toeplitz operator T(f)T(f) is normal if and only if the range of its generator f:T→Cf:\mathbb {T}\rightarrow \mathbb {C} is included in a straight line. In this paper, discretizing f(T)f(\mathbb {T}) and using the Principal Component Analysis method to project it onto a ‘best’ line segment in L2L^2-norm, we propose a numerical method to find the nearest normal Toeplitz operator from T(f)T(f) in the norm |||T(f)|||≔‖f‖L2(T){\left \vert \kern -0.25ex\left \vert \kern -0.25ex\left \vert T(f)\right \vert \kern -0.25ex\right \vert \kern -0.25ex\right \vert }\coloneq \Vert f \Vert _{L^2(\mathbb {T})} which is weaker than the operator norm. Besides, we introduce an index for the distance from normality of Toeplitz operators which is invariant under the transformations f↦af+bf\mapsto a f+b for all a∈Ra\in \mathbb {R} and b∈Cb \in \mathbb {C} with a≠0a\neq 0.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.