Transversals in quasirandom latin squares

IF 1.5 1区 数学 Q1 MATHEMATICS
Sean Eberhard, Freddie Manners, Rudi Mrazovi'c
{"title":"Transversals in quasirandom latin squares","authors":"Sean Eberhard, Freddie Manners, Rudi Mrazovi'c","doi":"10.1112/plms.12538","DOIUrl":null,"url":null,"abstract":"A transversal in an n×n$n \\times n$ latin square is a collection of n$n$ entries not repeating any row, column, or symbol. Kwan showed that almost every n×n$n \\times n$ latin square has (1+o(1))n/e2n$\\bigl ((1 + o(1)) n / e^2\\bigr )^n$ transversals as n→∞$n \\rightarrow \\infty$ . Using a loose variant of the circle method we sharpen this to (e−1/2+o(1))n!2/nn$(e^{-1/2} + o(1)) n!^2 / n^n$ . Our method works for all latin squares satisfying a certain quasirandomness condition, which includes both random latin squares with high probability as well as multiplication tables of quasirandom groups.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12538","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

A transversal in an n×n$n \times n$ latin square is a collection of n$n$ entries not repeating any row, column, or symbol. Kwan showed that almost every n×n$n \times n$ latin square has (1+o(1))n/e2n$\bigl ((1 + o(1)) n / e^2\bigr )^n$ transversals as n→∞$n \rightarrow \infty$ . Using a loose variant of the circle method we sharpen this to (e−1/2+o(1))n!2/nn$(e^{-1/2} + o(1)) n!^2 / n^n$ . Our method works for all latin squares satisfying a certain quasirandomness condition, which includes both random latin squares with high probability as well as multiplication tables of quasirandom groups.
准随机拉丁方中的横截面
n×n $n \times n$拉丁方格中的截线是n个$n$项的集合,不重复任何行、列或符号。Kwan证明了几乎每个n×n $n \times n$拉丁方都有(1+o(1))n/e2n $\bigl ((1 + o(1)) n / e^2\bigr )^n$截线为n→∞$n \rightarrow \infty$。使用圆法的松散变体,我们将其锐化为(e - 1/2+o(1))n!2/nn $(e^{-1/2} + o(1)) n!^2 / n^n$。该方法适用于满足准随机条件的所有拉丁平方,既包括高概率随机拉丁平方,也包括准随机群的乘法表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信