{"title":"A note on the asymptotic stability of the semi-discrete method for stochastic differential equations","authors":"N. Halidias, I. Stamatiou","doi":"10.1515/mcma-2022-2102","DOIUrl":null,"url":null,"abstract":"Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"13 - 25"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.