The fixed point set of the inverse involution on a Lie group

IF 0.7 4区 数学 Q2 MATHEMATICS
H. Duan, Shali Liu
{"title":"The fixed point set of the inverse involution on a Lie group","authors":"H. Duan, Shali Liu","doi":"10.12775/tmna.2022.012","DOIUrl":null,"url":null,"abstract":"The inverse involution on a Lie group $G$ is the periodic $2$ transformation\n$\\gamma $ that sends each element $g\\in G$ to its inverse $g^{-1}$. The\nvariety of the fixed point set $\\Fix(\\gamma )$ is of importance for the\nrelevances with Morse function on the Lie group $G$, and the $G$-representations\nof the cyclic group $\\mathbb{Z}_{2}$. \nIn this paper we develop an approach to calculate the diffeomorphism types of the fixed point sets $\\Fix(\\gamma)$ for the simple Lie groups.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The inverse involution on a Lie group $G$ is the periodic $2$ transformation $\gamma $ that sends each element $g\in G$ to its inverse $g^{-1}$. The variety of the fixed point set $\Fix(\gamma )$ is of importance for the relevances with Morse function on the Lie group $G$, and the $G$-representations of the cyclic group $\mathbb{Z}_{2}$. In this paper we develop an approach to calculate the diffeomorphism types of the fixed point sets $\Fix(\gamma)$ for the simple Lie groups.
李群上逆对合的不动点集
李群$G$上的逆对合是周期$2$变换$\gamma $,它将G$中的每个元素$G \发送到它的逆$G ^{-1}$。不动点集$\Fix(\gamma)$的变化对于李群$G$上的Morse函数的相关性和循环群$\mathbb{Z}_{2}$的$G$-表示具有重要意义。本文给出了一种计算简单李群不动点集$\Fix(\gamma)$的微分同态类型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信