{"title":"The fixed point set of the inverse involution on a Lie group","authors":"H. Duan, Shali Liu","doi":"10.12775/tmna.2022.012","DOIUrl":null,"url":null,"abstract":"The inverse involution on a Lie group $G$ is the periodic $2$ transformation\n$\\gamma $ that sends each element $g\\in G$ to its inverse $g^{-1}$. The\nvariety of the fixed point set $\\Fix(\\gamma )$ is of importance for the\nrelevances with Morse function on the Lie group $G$, and the $G$-representations\nof the cyclic group $\\mathbb{Z}_{2}$. \nIn this paper we develop an approach to calculate the diffeomorphism types of the fixed point sets $\\Fix(\\gamma)$ for the simple Lie groups.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The inverse involution on a Lie group $G$ is the periodic $2$ transformation
$\gamma $ that sends each element $g\in G$ to its inverse $g^{-1}$. The
variety of the fixed point set $\Fix(\gamma )$ is of importance for the
relevances with Morse function on the Lie group $G$, and the $G$-representations
of the cyclic group $\mathbb{Z}_{2}$.
In this paper we develop an approach to calculate the diffeomorphism types of the fixed point sets $\Fix(\gamma)$ for the simple Lie groups.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.