Rational and Quasi-Permutation Representations of Holomorphs of Cyclic $p$-Groups

IF 0.7 Q2 MATHEMATICS
S. Pradhan, B. Sury
{"title":"Rational and Quasi-Permutation Representations of Holomorphs of Cyclic $p$-Groups","authors":"S. Pradhan, B. Sury","doi":"10.22108/IJGT.2021.128359.1686","DOIUrl":null,"url":null,"abstract":"‎For a finite group $G$‎, ‎three of the positive integers governing its‎ ‎representation theory over $mathbb{C}$ and over $mathbb{Q}$ are‎ ‎$p(G),q(G),c(G)$‎. ‎Here‎, ‎$p(G)$ denotes the {it minimal degree} of a‎ ‎faithful permutation representation of $G$‎. ‎Also‎, ‎$c(G)$ and $q(G)$‎ ‎are‎, ‎respectively‎, ‎the minimal degrees of a faithful representation‎ ‎of $G$ by quasi-permutation matrices over the fields $mathbb{C}$‎ ‎and $mathbb{Q}$‎. ‎We have $c(G)leq q(G)leq p(G)$ and‎, ‎in general‎, ‎either inequality may be strict‎. ‎In this paper‎, ‎we study the‎ ‎representation theory of the group $G =$ Hol$(C_{p^{n}})$‎, ‎which is‎ ‎the {it holomorph} of a cyclic group of order $p^n$‎, ‎$p$ a prime‎. ‎This group is metacyclic when $p$ is odd and metabelian but not‎ ‎metacyclic when $p=2$ and $n geq 3$‎. ‎We explicitly describe the set‎ ‎of all {it isomorphism types} of irreducible representations of $G$‎ ‎over the field of complex numbers $mathbb{C}$ as well as the‎ ‎isomorphism types over the field of rational numbers $mathbb{Q}$‎. ‎We compute the {it Wedderburn decomposition} of the rational group‎ ‎algebra of $G$‎. ‎Using the descriptions of the irreducible‎ ‎representations of $G$ over $mathbb{C}$ and over $mathbb{Q}$‎, ‎we‎ ‎show that $c(G) = q(G) = p(G) = p^n$ for any prime $p$‎. ‎The proofs‎ ‎are often different for the case of $p$ odd and $p=2$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.128359.1686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

‎For a finite group $G$‎, ‎three of the positive integers governing its‎ ‎representation theory over $mathbb{C}$ and over $mathbb{Q}$ are‎ ‎$p(G),q(G),c(G)$‎. ‎Here‎, ‎$p(G)$ denotes the {it minimal degree} of a‎ ‎faithful permutation representation of $G$‎. ‎Also‎, ‎$c(G)$ and $q(G)$‎ ‎are‎, ‎respectively‎, ‎the minimal degrees of a faithful representation‎ ‎of $G$ by quasi-permutation matrices over the fields $mathbb{C}$‎ ‎and $mathbb{Q}$‎. ‎We have $c(G)leq q(G)leq p(G)$ and‎, ‎in general‎, ‎either inequality may be strict‎. ‎In this paper‎, ‎we study the‎ ‎representation theory of the group $G =$ Hol$(C_{p^{n}})$‎, ‎which is‎ ‎the {it holomorph} of a cyclic group of order $p^n$‎, ‎$p$ a prime‎. ‎This group is metacyclic when $p$ is odd and metabelian but not‎ ‎metacyclic when $p=2$ and $n geq 3$‎. ‎We explicitly describe the set‎ ‎of all {it isomorphism types} of irreducible representations of $G$‎ ‎over the field of complex numbers $mathbb{C}$ as well as the‎ ‎isomorphism types over the field of rational numbers $mathbb{Q}$‎. ‎We compute the {it Wedderburn decomposition} of the rational group‎ ‎algebra of $G$‎. ‎Using the descriptions of the irreducible‎ ‎representations of $G$ over $mathbb{C}$ and over $mathbb{Q}$‎, ‎we‎ ‎show that $c(G) = q(G) = p(G) = p^n$ for any prime $p$‎. ‎The proofs‎ ‎are often different for the case of $p$ odd and $p=2$‎.
循环$p$-群的全形的有理和拟置换表示
对于有限群$G$,在$mathbb{C}$和$mathbb{Q}$上支配其表示理论的三个正整数是$p(G), Q (G), C (G)$。在这里,$p(G)$表示$G$的忠实置换表示的{最小度}。同样,$c(G)$和$q(G)$分别是$G$由拟置换矩阵在$mathbb{c}$和$mathbb{q}$ $上的忠实表示的最小度。我们有$c(G)leq q(G)leq p(G)$和,一般来说,两个不等式都可以是严格的。本文研究了群$G =$ Hol$(C_{p^{n}})$ $的表示理论,该群$G =$ Hol$(C_{p^{n}})$ $是$p^n$ $, $p$ a素数$ $的整数全纯形。当$p$为奇数且为亚环时,该组为元环,但当$p=2$和$n geq $ 3$时,该组不为元环。我们显式地描述了复数域$mathbb{C}$上的不可约表示$G$的所有{it同构类型}的集合,以及有理数域$mathbb{Q}$™上的同构类型。我们计算了$G$ $的有理群代数的{it Wedderburn分解}。利用$G$ / $mathbb{C}$和$mathbb{Q}$ $的不可约表示的描述,我们证明了对于任意素数$p$ $, $ C (G) = Q (G) = p(G) = p^n$。对于$p$奇数和$p=2的情况,证明通常是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信