An optimized hybrid methodology for non-invasive fetal electrocardiogram signal extraction and monitoring

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2023-09-01 DOI:10.1016/j.array.2023.100302
Theodoros Lampros , Konstantinos Kalafatakis , Nikolaos Giannakeas , Markos G. Tsipouras , Euripidis Glavas , Alexandros T. Tzallas
{"title":"An optimized hybrid methodology for non-invasive fetal electrocardiogram signal extraction and monitoring","authors":"Theodoros Lampros ,&nbsp;Konstantinos Kalafatakis ,&nbsp;Nikolaos Giannakeas ,&nbsp;Markos G. Tsipouras ,&nbsp;Euripidis Glavas ,&nbsp;Alexandros T. Tzallas","doi":"10.1016/j.array.2023.100302","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><p>Electronic fetal heart monitoring is currently used during pregnancy throughout most of the developed world to detect risk conditions for both the mother and the fetus. Non-invasive fetal electrocardiogram (NI-fECG), recorded in the maternal abdomen, represents an alternative to cardiotocography, which could provide a more accurate estimate of fetal heart rate. Different methodologies, with varying advantages and disadvantages, have been developed for NI-fECG signal detection and processing.</p></div><div><h3>Methods</h3><p>In this context, we propose a hybrid methodology, combining independent component analysis, signal quality indices, empirical mode decomposition, wavelet thresholding and correlation analysis for NI-fECG optimized signal extraction, denoising, enhancement and addressing the intrinsic mode function selection problem.</p></div><div><h3>Results</h3><p>The methodology has been applied in four different datasets, and the obtained results indicate that our method can produce accurate fetal heart rate (FHR) estimations when tested against different datasets of variable quality and acquisition protocols, on the FECGDARHA dataset our method achieved average values of Sensitivity = 98.55%, Positive Predictive Value = 91.73%, F1 = 94.92%, Accuracy = 90.91%, while on the ARDNIFECG dataset it achieved average values of Sensitivity = 92.96%, Positive Predictive Value = 91.66%, F1 = 93.60%, Accuracy = 90.45%.</p></div><div><h3>Conclusions</h3><p>The proposed methodology is completely unsupervised, has been proven robust in different signal-to-noise ratio scenarios and abdominal signals, and could potentially be applied to the development of real-time fetal monitoring systems.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective

Electronic fetal heart monitoring is currently used during pregnancy throughout most of the developed world to detect risk conditions for both the mother and the fetus. Non-invasive fetal electrocardiogram (NI-fECG), recorded in the maternal abdomen, represents an alternative to cardiotocography, which could provide a more accurate estimate of fetal heart rate. Different methodologies, with varying advantages and disadvantages, have been developed for NI-fECG signal detection and processing.

Methods

In this context, we propose a hybrid methodology, combining independent component analysis, signal quality indices, empirical mode decomposition, wavelet thresholding and correlation analysis for NI-fECG optimized signal extraction, denoising, enhancement and addressing the intrinsic mode function selection problem.

Results

The methodology has been applied in four different datasets, and the obtained results indicate that our method can produce accurate fetal heart rate (FHR) estimations when tested against different datasets of variable quality and acquisition protocols, on the FECGDARHA dataset our method achieved average values of Sensitivity = 98.55%, Positive Predictive Value = 91.73%, F1 = 94.92%, Accuracy = 90.91%, while on the ARDNIFECG dataset it achieved average values of Sensitivity = 92.96%, Positive Predictive Value = 91.66%, F1 = 93.60%, Accuracy = 90.45%.

Conclusions

The proposed methodology is completely unsupervised, has been proven robust in different signal-to-noise ratio scenarios and abdominal signals, and could potentially be applied to the development of real-time fetal monitoring systems.

无创胎儿心电图信号提取与监测的优化混合方法
背景和目的电子胎心监护目前在大多数发达国家的怀孕期间使用,以检测母亲和胎儿的危险状况。无创胎儿心电图(NI-fECG),记录在母体腹部,代表了一种替代心脏摄影,它可以提供更准确的胎儿心率估计。不同的方法,具有不同的优点和缺点,已开发用于NI-fECG信号的检测和处理。方法结合独立分量分析、信号质量指标、经验模态分解、小波阈值化和相关分析等方法,对NI-fECG信号进行优化提取、去噪、增强,并解决固有模态函数选择问题。结果该方法应用于4个不同的数据集,结果表明,在不同质量和采集方案的数据集上,我们的方法可以准确地估计出胎儿心率(FHR),在FECGDARHA数据集上,我们的方法的平均灵敏度为98.55%,阳性预测值为91.73%,F1 = 94.92%,准确率为90.91%,在ARDNIFECG数据集上,我们的方法的平均灵敏度为92.96%。阳性预测值= 91.66%,F1 = 93.60%,准确率= 90.45%。结论所提出的方法是完全无监督的,在不同的信噪比场景和腹部信号中被证明是鲁棒的,可以应用于胎儿实时监测系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信