{"title":"AN APPROACH TO POSITIONAL QUALITY CONTROL METHODS FOR AIRBORNE INSAR HIGH-RESOLUTION X-BAND ORTHOIMAGES AND P-BAND DIGITAL TERRAIN MODEL","authors":"G. P. Silva, R. Coutinho, R. A. S. Rosa","doi":"10.1590/S1982-21702021000100001","DOIUrl":null,"url":null,"abstract":"Abstract: The positional validation of datasets is an important step for cartography studies since it allows learning about its accuracy, and also indicates the data process quality. However, the positional validation of Synthetic Aperture Radar (SAR) datasets have some additional challenges when compared to optical images due to the geometric distortions. We employ existing targets such as traffic signs and lampposts in the scene and identify them on the image as control points. We performed the validation of the geographic coordinates used as planialtimetric positional control points, using both the amplitude backscattering orthoimage and the Digital Terrain Model (DTM) generated from the InSAR system. We employed the NMAS, ASPRS and NSSDA tests along with information by the Brazilian Standards. This validation showed these control points presented the following results for 1:10,000 scale: NMAS test - class “A” in PEC and PEC-PCD; ASPRS test - RMSE x = 1.317m, RMSE y = 1.231m and RMSE z = 1.145m; and NSSDA test - RMSE r = 1,802m, Precision r = 3.118m and Precision z = 2.244m. These results prove we can use the proposed targets as control points and the used InSAR datasets meet the expected quality for generation of geotechnic products for 1:10,000 scale.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1982-21702021000100001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The positional validation of datasets is an important step for cartography studies since it allows learning about its accuracy, and also indicates the data process quality. However, the positional validation of Synthetic Aperture Radar (SAR) datasets have some additional challenges when compared to optical images due to the geometric distortions. We employ existing targets such as traffic signs and lampposts in the scene and identify them on the image as control points. We performed the validation of the geographic coordinates used as planialtimetric positional control points, using both the amplitude backscattering orthoimage and the Digital Terrain Model (DTM) generated from the InSAR system. We employed the NMAS, ASPRS and NSSDA tests along with information by the Brazilian Standards. This validation showed these control points presented the following results for 1:10,000 scale: NMAS test - class “A” in PEC and PEC-PCD; ASPRS test - RMSE x = 1.317m, RMSE y = 1.231m and RMSE z = 1.145m; and NSSDA test - RMSE r = 1,802m, Precision r = 3.118m and Precision z = 2.244m. These results prove we can use the proposed targets as control points and the used InSAR datasets meet the expected quality for generation of geotechnic products for 1:10,000 scale.
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.