Development of neutron scattering kernels for cold neutron reflector materials

IF 1 Q3 NUCLEAR SCIENCE & TECHNOLOGY
J. Granada, J. I. M. Dami'an, J. Dawidowski, J. Robledo, C. Helman, G. Romanelli, Goran vSkoro
{"title":"Development of neutron scattering kernels for cold neutron reflector materials","authors":"J. Granada, J. I. M. Dami'an, J. Dawidowski, J. Robledo, C. Helman, G. Romanelli, Goran vSkoro","doi":"10.3233/jnr-210013","DOIUrl":null,"url":null,"abstract":"The newest neutron scattering applications are highly intensity-limited techniques that demand reducing the neutron losses between source and detectors. In addition, the nuclear industry demands more accurate data and procedures for the design and optimization of advanced fission reactors, especially for the treatment of fuel and moderator materials. To meet these demands, it is necessary to improve the existing calculation tools, through the generation of better models that describe the interaction of neutrons with the systems of interest. The Neutron Physics Department at Centro Atomico Bariloche (CNEA, Argentina) has been developing over the time new models for the interaction of slow neutrons with materials, to produce scattering kernels and cross section data in the thermal and cold neutron energy region. Besides the studies carried out on neutron moderators, we have recently begun looking at materials that could serve as efficient neutron reflectors over those energy ranges. In this work we present the results of transmission and scattering experiments on diamond nanopowder and magnesium hydride, carried out simultaneously at the VESUVIO spectrometer (ISIS, UK), and compare them with newly generated cross-section libraries.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-210013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

The newest neutron scattering applications are highly intensity-limited techniques that demand reducing the neutron losses between source and detectors. In addition, the nuclear industry demands more accurate data and procedures for the design and optimization of advanced fission reactors, especially for the treatment of fuel and moderator materials. To meet these demands, it is necessary to improve the existing calculation tools, through the generation of better models that describe the interaction of neutrons with the systems of interest. The Neutron Physics Department at Centro Atomico Bariloche (CNEA, Argentina) has been developing over the time new models for the interaction of slow neutrons with materials, to produce scattering kernels and cross section data in the thermal and cold neutron energy region. Besides the studies carried out on neutron moderators, we have recently begun looking at materials that could serve as efficient neutron reflectors over those energy ranges. In this work we present the results of transmission and scattering experiments on diamond nanopowder and magnesium hydride, carried out simultaneously at the VESUVIO spectrometer (ISIS, UK), and compare them with newly generated cross-section libraries.
冷中子反射材料中子散射核的研制
最新的中子散射应用是高强度限制技术,要求减少源和探测器之间的中子损耗。此外,核工业需要更精确的数据和程序来设计和优化先进的裂变反应堆,特别是在处理燃料和慢化剂材料方面。为了满足这些要求,有必要改进现有的计算工具,通过生成更好的模型来描述中子与感兴趣的系统的相互作用。巴里洛切原子中心(CNEA,阿根廷)的中子物理系一直在开发慢中子与材料相互作用的新模型,以产生散射核和热中子和冷中子能量区的截面数据。除了对中子减速剂的研究外,我们最近开始研究可以在这些能量范围内作为有效中子反射器的材料。在这项工作中,我们介绍了在VESUVIO光谱仪(ISIS, UK)上同时进行的金刚石纳米粉和氢化镁的透射和散射实验结果,并将它们与新生成的截面文库进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neutron Research
Journal of Neutron Research NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信