{"title":"Several inequalities for an integral transform of positive operators in Hilbert spaces with applications","authors":"S. Dragomir, S. S. Dragomir","doi":"10.56754/0719-0646.2502.195","DOIUrl":null,"url":null,"abstract":"For a continuous and positive function \\(w\\left( \\lambda \\right) ,\\) \\(\\lambda>0\\) and \\(\\mu \\) a positive measure on \\((0,\\infty )\\) we consider the following Integral Transform \\[ \\begin{equation*} \\mathcal{D}\\left( w,\\mu \\right) \\left( T\\right) :=\\int_{0}^{\\infty }w\\left(\\lambda \\right) \\left( \\lambda +T\\right)^{-1}d\\mu \\left( \\lambda \\right) , \\end{equation*} \\] where the integral is assumed to exist for \\(T\\) a postive operator on a complex Hilbert space \\(H\\). We show among others that, if \\( \\beta \\geq A \\geq \\alpha > 0, \\, B > 0 \\) with \\( M \\geq B-A \\geq m > 0 \\) for some constants \\( \\alpha, \\beta, m, M \\), then \\[ \\begin{align*} 0 & \\leq \\frac{m^{2}}{M^{2}}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\beta\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(M+\\beta\\right) \\right] \\\\ & \\leq \\frac{m^{2}}{M}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\beta\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(M+\\beta\\right) \\right] \\left( B-A\\right)^{-1} \\\\ & \\leq \\mathcal{D}\\left( w,\\mu \\right) \\left(A\\right) - \\mathcal{D}\\left(w,\\mu\\right) \\left(B\\right) \\\\ & \\leq \\frac{M^{2}}{m}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\alpha\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(m+\\alpha\\right) \\right] \\left(B-A\\right)^{-1} \\\\ & \\leq \\frac{M^{2}}{m^{2}}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\alpha\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(m+\\alpha\\right) \\right]. \\end{align*} \\] Some examples for operator monotone and operator convex functions as well as for integral transforms \\(\\mathcal{D}\\left( \\cdot ,\\cdot \\right) \\) related to the exponential and logarithmic functions are also provided.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a continuous and positive function \(w\left( \lambda \right) ,\) \(\lambda>0\) and \(\mu \) a positive measure on \((0,\infty )\) we consider the following Integral Transform \[ \begin{equation*} \mathcal{D}\left( w,\mu \right) \left( T\right) :=\int_{0}^{\infty }w\left(\lambda \right) \left( \lambda +T\right)^{-1}d\mu \left( \lambda \right) , \end{equation*} \] where the integral is assumed to exist for \(T\) a postive operator on a complex Hilbert space \(H\). We show among others that, if \( \beta \geq A \geq \alpha > 0, \, B > 0 \) with \( M \geq B-A \geq m > 0 \) for some constants \( \alpha, \beta, m, M \), then \[ \begin{align*} 0 & \leq \frac{m^{2}}{M^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \\ & \leq \frac{m^{2}}{M}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \left( B-A\right)^{-1} \\ & \leq \mathcal{D}\left( w,\mu \right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right) \\ & \leq \frac{M^{2}}{m}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1} \\ & \leq \frac{M^{2}}{m^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right]. \end{align*} \] Some examples for operator monotone and operator convex functions as well as for integral transforms \(\mathcal{D}\left( \cdot ,\cdot \right) \) related to the exponential and logarithmic functions are also provided.