Several inequalities for an integral transform of positive operators in Hilbert spaces with applications

IF 0.6 Q3 MATHEMATICS
Cubo Pub Date : 2023-07-19 DOI:10.56754/0719-0646.2502.195
S. Dragomir, S. S. Dragomir
{"title":"Several inequalities for an integral transform of positive operators in Hilbert spaces with applications","authors":"S. Dragomir, S. S. Dragomir","doi":"10.56754/0719-0646.2502.195","DOIUrl":null,"url":null,"abstract":"For a continuous and positive function \\(w\\left( \\lambda \\right) ,\\) \\(\\lambda>0\\) and \\(\\mu \\) a positive measure on \\((0,\\infty )\\) we consider the following Integral Transform \\[ \\begin{equation*} \\mathcal{D}\\left( w,\\mu \\right) \\left( T\\right) :=\\int_{0}^{\\infty }w\\left(\\lambda \\right) \\left( \\lambda +T\\right)^{-1}d\\mu \\left( \\lambda \\right) , \\end{equation*} \\] where the integral is assumed to exist for \\(T\\) a postive operator on a complex Hilbert space \\(H\\). We show among others that, if \\( \\beta \\geq A \\geq \\alpha > 0, \\, B > 0 \\) with \\( M \\geq B-A \\geq m > 0 \\) for some constants \\( \\alpha,  \\beta,  m,  M \\), then \\[ \\begin{align*} 0 & \\leq \\frac{m^{2}}{M^{2}}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\beta\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(M+\\beta\\right) \\right] \\\\ & \\leq \\frac{m^{2}}{M}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\beta\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(M+\\beta\\right) \\right] \\left( B-A\\right)^{-1} \\\\ & \\leq \\mathcal{D}\\left( w,\\mu \\right) \\left(A\\right) - \\mathcal{D}\\left(w,\\mu\\right) \\left(B\\right) \\\\ & \\leq \\frac{M^{2}}{m}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\alpha\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(m+\\alpha\\right) \\right] \\left(B-A\\right)^{-1} \\\\ & \\leq \\frac{M^{2}}{m^{2}}\\left[ \\mathcal{D}\\left( w,\\mu \\right) \\left(\\alpha\\right) - \\mathcal{D}\\left( w,\\mu \\right) \\left(m+\\alpha\\right) \\right]. \\end{align*} \\] Some examples for operator monotone and operator convex functions as well as for integral transforms \\(\\mathcal{D}\\left( \\cdot ,\\cdot \\right) \\) related to the exponential and logarithmic functions are also provided.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a continuous and positive function \(w\left( \lambda \right) ,\) \(\lambda>0\) and \(\mu \) a positive measure on \((0,\infty )\) we consider the following Integral Transform \[ \begin{equation*} \mathcal{D}\left( w,\mu \right) \left( T\right) :=\int_{0}^{\infty }w\left(\lambda \right) \left( \lambda +T\right)^{-1}d\mu \left( \lambda \right) , \end{equation*} \] where the integral is assumed to exist for \(T\) a postive operator on a complex Hilbert space \(H\). We show among others that, if \( \beta \geq A \geq \alpha > 0, \, B > 0 \) with \( M \geq B-A \geq m > 0 \) for some constants \( \alpha,  \beta,  m,  M \), then \[ \begin{align*} 0 & \leq \frac{m^{2}}{M^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \\ & \leq \frac{m^{2}}{M}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \left( B-A\right)^{-1} \\ & \leq \mathcal{D}\left( w,\mu \right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right) \\ & \leq \frac{M^{2}}{m}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1} \\ & \leq \frac{M^{2}}{m^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right]. \end{align*} \] Some examples for operator monotone and operator convex functions as well as for integral transforms \(\mathcal{D}\left( \cdot ,\cdot \right) \) related to the exponential and logarithmic functions are also provided.
Hilbert空间中正算子积分变换的几个不等式及其应用
对于一个连续的正函数\(w\left(\lambda\right),\)\(\lambda>0\)和\(\mu\)上的一个正测度\((0,\infty)\),我们考虑以下积分变换\[\begin{equipment*}\mathcal{D}\left(w,\mu\right)\left(T\right):=\int_{0}^{\infty}w\left^{-1}d\μ\left(\lambda\right),\end{equipment*}\],其中假定复数Hilbert空间\(H\)上的正算子\(T\)存在积分。我们证明了,如果对于某些常数\(\α,\β,M,M\),\(\β\ geqA\ geq\alpha>0,\,B>0\)与\(M\ geqB-A\ geq M>0\),然后\[\begin{align*}0&\leq\frac{m^{2}}{m^{2中}}\left[\mathcal{D}\left(w,\mu\right)\left right)\left(m+\beta\right)\right]\left(B-A\right)^{-1}\\&&\leq\mathcal{D}\left(w,\mu\right)\ left(A\right-\mathcal{D}\left(w,\mu\right)\left(B\right)\\&&\leq\frac{M^{2}}{M}\left[\mathcal{D}\left(w,\mu\ right)\left(M+\alpha\right)\ right]\left \mu\right)\left(\alpha\right)-\mathcal{D}\left(w,\mu\right\left(M+\alpha\ right)\right]。\end{align*}\]还提供了算子单调函数和算子凸函数的一些例子,以及与指数函数和对数函数有关的积分变换\(\mathcal{D}\left(\cdot,\cdot\right)\)的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信