Avalanche effect and bit independence criterion of perfectly secure Shannon cipher based on matrix power

Q4 Engineering
A. Mihalkovich, M. Levinskas
{"title":"Avalanche effect and bit independence criterion of perfectly secure Shannon cipher based on matrix power","authors":"A. Mihalkovich, M. Levinskas","doi":"10.21595/mme.2021.22234","DOIUrl":null,"url":null,"abstract":"In 2020 E. Sakalauskas with coauthors published a paper defining perfectly secure Shannon cipher based on matrix power function, proposing effective parallelization, and ensuring no need for multiple rounds encrypting one data block [1]. In this paper we present computational results with the avalanche effect and bit independence criterion (BIC). These criteria are important when describing the rate of confusion of bits in the ciphertext. It was observed that increasing matrix order and group size enhance BIC and avalanche effect results converging to the desired values. Based on the outputs it is possible to pick appropriate parameters satisfying security needs and available memory in a device where appropriate keys are going to be stored.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2021.22234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In 2020 E. Sakalauskas with coauthors published a paper defining perfectly secure Shannon cipher based on matrix power function, proposing effective parallelization, and ensuring no need for multiple rounds encrypting one data block [1]. In this paper we present computational results with the avalanche effect and bit independence criterion (BIC). These criteria are important when describing the rate of confusion of bits in the ciphertext. It was observed that increasing matrix order and group size enhance BIC and avalanche effect results converging to the desired values. Based on the outputs it is possible to pick appropriate parameters satisfying security needs and available memory in a device where appropriate keys are going to be stored.
基于矩阵幂的完全安全香农密码的雪崩效应和位无关准则
2020年,E. Sakalauskas及其合作者发表了一篇论文,定义了基于矩阵幂函数的完全安全香农密码,提出了有效的并行化,并确保不需要对一个数据块[1]进行多轮加密。本文给出了雪崩效应和位无关准则(BIC)的计算结果。在描述密文中比特的混淆率时,这些标准很重要。观察到,增加矩阵阶数和组大小可以增强BIC和雪崩效应的结果收敛到期望值。根据输出,可以选择适当的参数,以满足安全需求和设备中的可用内存,其中将存储适当的密钥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信