Large Language Models and Logical Reasoning

Robert Friedman
{"title":"Large Language Models and Logical Reasoning","authors":"Robert Friedman","doi":"10.3390/encyclopedia3020049","DOIUrl":null,"url":null,"abstract":"In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions.","PeriodicalId":72905,"journal":{"name":"Encyclopedia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/encyclopedia3020049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions.
大型语言模型与逻辑推理
在深度学习中,大型语言模型通常根据语料库中的数据进行训练,作为当前知识的代表。然而,自然语言并不是可靠的概念交流的理想形式。相反,形式逻辑语句更可取,因为它们受可验证性、可靠性和适用性的约束。这种偏好的另一个原因是,自然语言不是为高效可靠的信息和知识流而设计的,而是由先前的一组自然约束形成的进化适应。作为一种形式结构化的语言,逻辑语句也更易于解释。它们可以以自然语言语句的形式非正式地构建,但形式化的逻辑语句应该遵循一套更严格的规则,例如使用符号来表示连接多个简单语句并形成可验证命题的基于逻辑的运算符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信