{"title":"On the Euler–Poincaré characteristics of a simply connected rationally elliptic CW-complex","authors":"Mahmoud Benkhalifa","doi":"10.1007/s40062-022-00301-2","DOIUrl":null,"url":null,"abstract":"<div><p>For a simply connected rationally elliptic CW-complex <i>X</i>, we show that the cohomology and the homotopy Euler–Poincaré characteristics are related to two new numerical invariants namely <span>\\(\\eta _{X}\\)</span> and <span>\\(\\rho _{X}\\)</span> which we define using the Whitehead exact sequences of the Quillen and the Sullivan models of <i>X</i>.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"17 2","pages":"163 - 174"},"PeriodicalIF":0.7000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00301-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a simply connected rationally elliptic CW-complex X, we show that the cohomology and the homotopy Euler–Poincaré characteristics are related to two new numerical invariants namely \(\eta _{X}\) and \(\rho _{X}\) which we define using the Whitehead exact sequences of the Quillen and the Sullivan models of X.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.