V. Hernández, J. Estrada, E. Moreno, S. Rodriguez, A. Mansur
{"title":"Numerical Solution of a Wave Propagation Problem Along Plate Structures Based on the Isogeometric Approach","authors":"V. Hernández, J. Estrada, E. Moreno, S. Rodriguez, A. Mansur","doi":"10.1142/S0218396X17500308","DOIUrl":null,"url":null,"abstract":"Ultrasonic guided waves propagating along large structures have great potential as a nondestructive evaluation method. In this context, it is very important to obtain the dispersion curves, which depend on the cross-section of the structure. In this paper, we compute dispersion curves along infinite isotropic plate-like structures using the semi-analytical method (SAFEM) with an isogeometric approach based on B-spline functions. The SAFEM method leads to a family of generalized eigenvalue problems depending on the wave number. For a prescribed wave number, the solution of this problem consists of the nodal displacement vector and the frequency of the guided wave. In this work, the results obtained with B-splines shape functions are compared to the numerical SAFEM solution with quadratic Lagrange shape functions. Advantages of the isogeometric approach are highlighted and include the smoothness of the displacement field components and the computational cost of solving the corresponding generalized eigenval...","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"1 1","pages":"1750030"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X17500308","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X17500308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
Ultrasonic guided waves propagating along large structures have great potential as a nondestructive evaluation method. In this context, it is very important to obtain the dispersion curves, which depend on the cross-section of the structure. In this paper, we compute dispersion curves along infinite isotropic plate-like structures using the semi-analytical method (SAFEM) with an isogeometric approach based on B-spline functions. The SAFEM method leads to a family of generalized eigenvalue problems depending on the wave number. For a prescribed wave number, the solution of this problem consists of the nodal displacement vector and the frequency of the guided wave. In this work, the results obtained with B-splines shape functions are compared to the numerical SAFEM solution with quadratic Lagrange shape functions. Advantages of the isogeometric approach are highlighted and include the smoothness of the displacement field components and the computational cost of solving the corresponding generalized eigenval...
期刊介绍:
Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.