{"title":"5.85-mW 3.1–23.7-GHz Two-Stage CMOS VGA With 2.53-dB NF Using Concurrent Current Steering","authors":"Jin-Fa Chang, Yo‐Sheng Lin","doi":"10.1109/LMWC.2022.3189593","DOIUrl":null,"url":null,"abstract":"A low-power and low noise-figure (NF) 3.1–23.7-GHz CMOS variable-gain amplifier (VGA) is presented. The VGA composes of a complimentary common-source (CCS) first stage, followed by a common-source (CS) second stage. Low power and NF and wideband <inline-formula> <tex-math notation=\"LaTeX\">$S_{11}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\"LaTeX\">$S_{21}$ </tex-math></inline-formula> are achieved due to the current-reused CCS input stage with multiple inductive impedance matching and gain compensation. A large gain tuning range (with low NF) is achieved due to the concurrent gate–voltage tuning (or current steering) of the first and the second stages. The VGA consumes 5.85 mW (at <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {ctrl}}$ </tex-math></inline-formula> of 1 V) and achieves excellent 3-dB bandwidth (<inline-formula> <tex-math notation=\"LaTeX\">$f_{3\\,\\mathrm {dB}}$ </tex-math></inline-formula>) of 20.6 GHz (3.1–23.7 GHz), maximum <inline-formula> <tex-math notation=\"LaTeX\">$S_{21}$ </tex-math></inline-formula> of 11.9 dB, minimum NF (NFmin) of 2.53 dB, average NF (NFavg) of 3.97 dB, small group delay (GD) variation of ±16.5 ps, and input third-order intercept point (IIP3) of −6.5 dBm. Moreover, the VGA achieves a decent gain tuning range of 23.4 dB (−5.4 to 18 dB) for <inline-formula> <tex-math notation=\"LaTeX\">$V_{\\mathrm {ctrl}}$ </tex-math></inline-formula> of 0.6–1.6 V. The chip area is 0.364 mm2.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1331-1334"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3189593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A low-power and low noise-figure (NF) 3.1–23.7-GHz CMOS variable-gain amplifier (VGA) is presented. The VGA composes of a complimentary common-source (CCS) first stage, followed by a common-source (CS) second stage. Low power and NF and wideband $S_{11}$ and $S_{21}$ are achieved due to the current-reused CCS input stage with multiple inductive impedance matching and gain compensation. A large gain tuning range (with low NF) is achieved due to the concurrent gate–voltage tuning (or current steering) of the first and the second stages. The VGA consumes 5.85 mW (at $V_{\mathrm {ctrl}}$ of 1 V) and achieves excellent 3-dB bandwidth ($f_{3\,\mathrm {dB}}$ ) of 20.6 GHz (3.1–23.7 GHz), maximum $S_{21}$ of 11.9 dB, minimum NF (NFmin) of 2.53 dB, average NF (NFavg) of 3.97 dB, small group delay (GD) variation of ±16.5 ps, and input third-order intercept point (IIP3) of −6.5 dBm. Moreover, the VGA achieves a decent gain tuning range of 23.4 dB (−5.4 to 18 dB) for $V_{\mathrm {ctrl}}$ of 0.6–1.6 V. The chip area is 0.364 mm2.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.