A new characterization of GCD domains of formal power series

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Hamed
{"title":"A new characterization of GCD domains of formal power series","authors":"A. Hamed","doi":"10.1090/spmj/1731","DOIUrl":null,"url":null,"abstract":"<p>By using the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-operation, a new characterization of the property for a power series ring to be a GCD domain is discussed. It is shown that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U upper F upper D\">\n <mml:semantics>\n <mml:mi>UFD</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {UFD}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> is a GCD domain if and only if for any two integral <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-invertible <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v\">\n <mml:semantics>\n <mml:mi>v</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">v</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-ideals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J\">\n <mml:semantics>\n <mml:mi>J</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">J</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper I upper J right-parenthesis Subscript 0 Baseline not-equals left-parenthesis 0 right-parenthesis comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi>J</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(IJ)_{0}\\neq (0),</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we have <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis left-parenthesis upper I upper J right-parenthesis Subscript 0 Baseline right-parenthesis Subscript v\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi>J</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>v</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">((IJ)_{0})_{v}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"equals left-parenthesis left-parenthesis upper I upper J right-parenthesis Subscript v Baseline right-parenthesis Subscript 0 Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mi>J</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>v</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">= ((IJ)_{v})_{0},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I 0 equals left-brace f left-parenthesis 0 right-parenthesis bar f element-of upper I right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>I</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∣<!-- ∣ --></mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi>I</mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I_0=\\{f(0) \\mid f\\in I\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This shows that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a GCD domain such that <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> is a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\">\n <mml:semantics>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-domain, then <inline-formula content-type=\"math/tex\">\n<tex-math>\nD\\lBrack X\\rBrack </tex-math></inline-formula> is a GCD domain.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1731","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

By using the v v -operation, a new characterization of the property for a power series ring to be a GCD domain is discussed. It is shown that if D D is a UFD \operatorname {UFD} , then D\lBrack X\rBrack is a GCD domain if and only if for any two integral v v -invertible v v -ideals I I and J J of D\lBrack X\rBrack such that ( I J ) 0 ( 0 ) , (IJ)_{0}\neq (0), we have ( ( I J ) 0 ) v ((IJ)_{0})_{v} = ( ( I J ) v ) 0 , = ((IJ)_{v})_{0}, where I 0 = { f ( 0 ) f I } I_0=\{f(0) \mid f\in I\} . This shows that if D D is a GCD domain such that D\lBrack X\rBrack is a π \pi -domain, then D\lBrack X\rBrack is a GCD domain.

形式幂级数的GCD域的新表征
利用v-v运算,讨论了幂级数环为GCD域性质的一个新的刻画。证明了如果D D是一个UFD算子名{UFD},则D Brack X Brack是一个GCD域当且仅当对于D Brack的任意两个积分v v-可逆v v-理想I I和J J使得(I J)0≠(0),(IJ)_{0}\neq(0),我们有((IJ,式中I0={f(0)Şf∈I}I_0=在I\}中\。这表明,如果D是GCD结构域,使得D\lBrack X\rBrack是ππ-结构域,那么D\lBrackX\rBlack是GCD域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信