Multi-granularity Deep Local Representations for Irregular Scene Text Recognition

Hongchao Gao, Yujia Li, Jiao Dai, Xi Wang, Jizhong Han, Ruixuan Li
{"title":"Multi-granularity Deep Local Representations for Irregular Scene Text Recognition","authors":"Hongchao Gao, Yujia Li, Jiao Dai, Xi Wang, Jizhong Han, Ruixuan Li","doi":"10.1145/3446971","DOIUrl":null,"url":null,"abstract":"Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3446971","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.
不规则场景文本识别的多粒度深度局部表示
从自然场景图像中识别不规则文本具有挑战性,因为文本的外观不受约束,如弯曲、方向和扭曲。最近的识别网络将此任务视为文本序列标记问题,大多数网络仅从单一粒度的视觉表示中捕获序列,这在一定程度上限制了识别的性能。在本文中,我们提出了一种分层注意力网络来捕获多粒度的深层局部表示,用于识别不规则的场景文本。它由几个层次化的注意力块组成,每个块包含一个局部视觉表示模块(LVRM)和一个解码器模块(DM)。基于层次注意力网络,我们提出了一种场景文本识别网络。大量实验表明,在较短的训练时间下,我们提出的网络在几个基准数据集上实现了最先进的性能,包括IIIT-5K、SVT、CUTE、SVT Perspective和ICDAR数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信