{"title":"Colocalization of formal local cohomology modules","authors":"S. Rezaei","doi":"10.14492/hokmj/2018-906","DOIUrl":null,"url":null,"abstract":"Let $(R,\\frak{m})$ be a Noetherian local ring, $\\frak{a}$ an ideal of $R$ and $M$ a finitely generated $R$-module. In this paper, we study Colocalization of formal local cohomology modules. Here, similar to the local global Principle in local cohomology theory, we investigate artinianness and minimaxness of formal local cohomology modules in terms of their colocalizations. Among other things, we will prove that, for any integer $n$, $\\mathfrak{F}_{\\frak{a}}^i(M)$ is artinian $R$-module for all $i \\lt n$, if and only if $_{\\frak{p}}(\\mathfrak{F}_{\\frak{a}}^i(M)) $ is representable $R_{\\frak{p}}$-module for all $i \\lt n$ and all $\\frak{p} \\in \\operatorname{Spec}(R)$. Also, $ \\mathfrak{F}_{\\frak{a}}^i(M) $ is minimax $R$-module for all $i \\lt n$, if and only if $ _{\\frak{p}}(\\mathfrak{F}_{\\frak{a}}^i(M)) $ is representable $R_{\\frak{p}}$-module for all $i \\lt n$ and all $\\frak{p} \\in \\operatorname{Spec}(R)\\setminus\\lbrace \\frak{m}\\rbrace$.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2018-906","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $(R,\frak{m})$ be a Noetherian local ring, $\frak{a}$ an ideal of $R$ and $M$ a finitely generated $R$-module. In this paper, we study Colocalization of formal local cohomology modules. Here, similar to the local global Principle in local cohomology theory, we investigate artinianness and minimaxness of formal local cohomology modules in terms of their colocalizations. Among other things, we will prove that, for any integer $n$, $\mathfrak{F}_{\frak{a}}^i(M)$ is artinian $R$-module for all $i \lt n$, if and only if $_{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $ is representable $R_{\frak{p}}$-module for all $i \lt n$ and all $\frak{p} \in \operatorname{Spec}(R)$. Also, $ \mathfrak{F}_{\frak{a}}^i(M) $ is minimax $R$-module for all $i \lt n$, if and only if $ _{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $ is representable $R_{\frak{p}}$-module for all $i \lt n$ and all $\frak{p} \in \operatorname{Spec}(R)\setminus\lbrace \frak{m}\rbrace$.
期刊介绍:
The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.