Colocalization of formal local cohomology modules

IF 0.6 4区 数学 Q3 MATHEMATICS
S. Rezaei
{"title":"Colocalization of formal local cohomology modules","authors":"S. Rezaei","doi":"10.14492/hokmj/2018-906","DOIUrl":null,"url":null,"abstract":"Let $(R,\\frak{m})$ be a Noetherian local ring, $\\frak{a}$ an ideal of $R$ and $M$ a finitely generated $R$-module. In this paper, we study Colocalization of formal local cohomology modules. Here, similar to the local global Principle in local cohomology theory, we investigate artinianness and minimaxness of formal local cohomology modules in terms of their colocalizations. Among other things, we will prove that, for any integer $n$, $\\mathfrak{F}_{\\frak{a}}^i(M)$ is artinian $R$-module for all $i \\lt n$, if and only if $_{\\frak{p}}(\\mathfrak{F}_{\\frak{a}}^i(M)) $ is representable $R_{\\frak{p}}$-module for all $i \\lt n$ and all $\\frak{p} \\in \\operatorname{Spec}(R)$. Also, $ \\mathfrak{F}_{\\frak{a}}^i(M) $ is minimax $R$-module for all $i \\lt n$, if and only if $ _{\\frak{p}}(\\mathfrak{F}_{\\frak{a}}^i(M)) $ is representable $R_{\\frak{p}}$-module for all $i \\lt n$ and all $\\frak{p} \\in \\operatorname{Spec}(R)\\setminus\\lbrace \\frak{m}\\rbrace$.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2018-906","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(R,\frak{m})$ be a Noetherian local ring, $\frak{a}$ an ideal of $R$ and $M$ a finitely generated $R$-module. In this paper, we study Colocalization of formal local cohomology modules. Here, similar to the local global Principle in local cohomology theory, we investigate artinianness and minimaxness of formal local cohomology modules in terms of their colocalizations. Among other things, we will prove that, for any integer $n$, $\mathfrak{F}_{\frak{a}}^i(M)$ is artinian $R$-module for all $i \lt n$, if and only if $_{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $ is representable $R_{\frak{p}}$-module for all $i \lt n$ and all $\frak{p} \in \operatorname{Spec}(R)$. Also, $ \mathfrak{F}_{\frak{a}}^i(M) $ is minimax $R$-module for all $i \lt n$, if and only if $ _{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $ is representable $R_{\frak{p}}$-module for all $i \lt n$ and all $\frak{p} \in \operatorname{Spec}(R)\setminus\lbrace \frak{m}\rbrace$.
形式局部上同调模的共域化
设$(R,\ frk {m})$是一个noether局部环,$\ frk {a}$是$R$的理想,$ m $是一个有限生成的$R$-模。本文研究了形式局部上同模的共域化问题。本文类似于局部上同调理论中的局部全局原理,研究了形式局部上同调模的共域性和极小性。除此之外,我们将证明,对于任意整数$n$, $\mathfrak{F}_{\frak{a}}^i(M)$对于所有$i \lt n$都是$R$-模,当且仅当$_{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $对于所有$i \lt n$和所有$\frak{p} $-模在\operatorname{Spec}(R)$中是可表示的$R_{\frak{p}}$-模。同样,$\ mathfrak{F}_{\frak{a}}^i(M) $对于所有$i \lt n$是极小极大$R$-模组,当且仅当$ _{\frak{p}}(\mathfrak{F}_{\frak{a}}^i(M)) $是可表示的$R_{\frak{p}}$-模组对于所有$i \lt n$和所有$\frak{p} \in \operatorname{Spec}(R)\setminus\lbrace \frak{M}\rbrace$是可表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信