Bridge trisections and classical knotted surface theory

Pub Date : 2021-12-21 DOI:10.2140/pjm.2022.319.343
Jason Joseph, J. Meier, Maggie Miller, Alexander Zupan
{"title":"Bridge trisections and classical knotted surface theory","authors":"Jason Joseph, J. Meier, Maggie Miller, Alexander Zupan","doi":"10.2140/pjm.2022.319.343","DOIUrl":null,"url":null,"abstract":"We seek to connect ideas in the theory of bridge trisections with other well-studied facets of classical knotted surface theory. First, we show how the normal Euler number can be computed from a tri-plane diagram, and we use this to give a trisection-theoretic proof of the Whitney-Massey Theorem, which bounds the possible values of this number in terms of the Euler characteristic. Second, we describe in detail how to compute the fundamental group and related invariants from a tri-plane diagram, and we use this, together with an analysis of bridge trisections of ribbon surfaces, to produce an infinite family of knotted spheres that admit non-isotopic bridge trisections of minimal complexity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.319.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We seek to connect ideas in the theory of bridge trisections with other well-studied facets of classical knotted surface theory. First, we show how the normal Euler number can be computed from a tri-plane diagram, and we use this to give a trisection-theoretic proof of the Whitney-Massey Theorem, which bounds the possible values of this number in terms of the Euler characteristic. Second, we describe in detail how to compute the fundamental group and related invariants from a tri-plane diagram, and we use this, together with an analysis of bridge trisections of ribbon surfaces, to produce an infinite family of knotted spheres that admit non-isotopic bridge trisections of minimal complexity.
分享
查看原文
桥三分体与经典结面理论
我们试图将桥三分理论中的思想与经典打结表面理论中其他研究得很好的方面联系起来。首先,我们展示了如何从三平面图中计算正常的欧拉数,并用它给出了Whitney Massey定理的三分理论证明,该定理根据欧拉特性限制了该数的可能值。其次,我们详细描述了如何从三平面图中计算基本群和相关不变量,并将其与对带状表面的桥三段的分析一起使用,以产生一个无限族的打结球体,该球体允许具有最小复杂性的非同位素桥三段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信