Likelihood ratio-based CUSUM charts for real-time monitoring the quality of service in a network of queues

IF 1.5 Q3 HEALTH CARE SCIENCES & SERVICES
Yanqing Kuang, Devashish Das, M. Sir, K. Pasupathy
{"title":"Likelihood ratio-based CUSUM charts for real-time monitoring the quality of service in a network of queues","authors":"Yanqing Kuang, Devashish Das, M. Sir, K. Pasupathy","doi":"10.1080/24725579.2023.2181470","DOIUrl":null,"url":null,"abstract":"Abstract Queuing networks (QNs) are widely used stochastic models for service systems include healthcare systems, transportation systems, and computer networks. While existing literature has extensively focused on modeling and optimizing resource allocation in QNs, very little research has been done on developing systematic statistical monitoring methods for QNs. This paper proposes cumulative sum (CUSUM) control charts that monitor the queuing information collected in real-time from the QN. We compare the proposed methods with existing statistical monitoring methods to demonstrate their ability to quickly detect a change in the service rate of one or more queues at the nodes in the QN. Simulation results show that the proposed CUSUM charts are more effective than existing statistical monitoring methods. The motivation for this research comes from the need to monitor the performance of a hospital emergency department (ED) with the goal of monitoring delays experienced by patients visiting the ED. A case study using the data from the ED of a large academic medical center shows that proposed methods are a promising tool for monitoring the timeliness of care provided to patients visiting the ED.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2023.2181470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Queuing networks (QNs) are widely used stochastic models for service systems include healthcare systems, transportation systems, and computer networks. While existing literature has extensively focused on modeling and optimizing resource allocation in QNs, very little research has been done on developing systematic statistical monitoring methods for QNs. This paper proposes cumulative sum (CUSUM) control charts that monitor the queuing information collected in real-time from the QN. We compare the proposed methods with existing statistical monitoring methods to demonstrate their ability to quickly detect a change in the service rate of one or more queues at the nodes in the QN. Simulation results show that the proposed CUSUM charts are more effective than existing statistical monitoring methods. The motivation for this research comes from the need to monitor the performance of a hospital emergency department (ED) with the goal of monitoring delays experienced by patients visiting the ED. A case study using the data from the ED of a large academic medical center shows that proposed methods are a promising tool for monitoring the timeliness of care provided to patients visiting the ED.
基于似然比的CUSUM图表用于实时监控队列网络中的服务质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IISE Transactions on Healthcare Systems Engineering
IISE Transactions on Healthcare Systems Engineering Social Sciences-Safety Research
CiteScore
3.10
自引率
0.00%
发文量
19
期刊介绍: IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信