H. Changela, E. Chatzitheodoridis, André Antunes, D. Beaty, Kristian Bouw, J. Bridges, K. Capova, C. Cockell, C. Conley, E. Dadachova, T. D. Dallas, S. de Mey, C. Dong, A. Ellery, M. Ferus, B. Foing, Xiaohui Fu, K. Fujita, Yangting Lin, S. Jheeta, L. Hicks, Sen Hu, Á. Kereszturi, Alexandros Krassakis, Yang Liu, J. Oberst, J. Michalski, P. M. Ranjith, T. Rinaldi, D. Rothery, Hector A. Stavrakakis, L. Selbmann, R. K. Sinha, Alian Wang, K. Williford, Z. Váci, J. Vago, M. Waltemathe, J. E. Hallsworth
{"title":"Mars: new insights and unresolved questions","authors":"H. Changela, E. Chatzitheodoridis, André Antunes, D. Beaty, Kristian Bouw, J. Bridges, K. Capova, C. Cockell, C. Conley, E. Dadachova, T. D. Dallas, S. de Mey, C. Dong, A. Ellery, M. Ferus, B. Foing, Xiaohui Fu, K. Fujita, Yangting Lin, S. Jheeta, L. Hicks, Sen Hu, Á. Kereszturi, Alexandros Krassakis, Yang Liu, J. Oberst, J. Michalski, P. M. Ranjith, T. Rinaldi, D. Rothery, Hector A. Stavrakakis, L. Selbmann, R. K. Sinha, Alian Wang, K. Williford, Z. Váci, J. Vago, M. Waltemathe, J. E. Hallsworth","doi":"10.1017/S1473550421000276","DOIUrl":null,"url":null,"abstract":"\n Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include:\n\n \n –\n high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability;\n \n \n –\n putative fossils on Mars will likely be ambiguous biomarkers for life;\n \n \n –\n microbial contamination resulting from human habitation is unavoidable; and\n \n \n –\n based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.\n \n \n Some of the outstanding questions are:\n\n \n –\n which interpretation of the hemispheric dichotomy of the planet is correct;\n \n \n –\n to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface;\n \n \n –\n in what abundance are carbonates formed by atmospheric processes;\n \n \n –\n what properties of martian meteorites could be used to constrain their source locations;\n \n \n –\n the origin(s) of organic macromolecules;\n \n \n –\n was/is Mars inhabited;\n \n \n –\n how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth;\n \n \n –\n how can we ensure that humans and microbes form a stable and benign biosphere; and\n \n \n –\n should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?\n \n \n Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/S1473550421000276","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 23
Abstract
Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include:
–
high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability;
–
putative fossils on Mars will likely be ambiguous biomarkers for life;
–
microbial contamination resulting from human habitation is unavoidable; and
–
based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.
Some of the outstanding questions are:
–
which interpretation of the hemispheric dichotomy of the planet is correct;
–
to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface;
–
in what abundance are carbonates formed by atmospheric processes;
–
what properties of martian meteorites could be used to constrain their source locations;
–
the origin(s) of organic macromolecules;
–
was/is Mars inhabited;
–
how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth;
–
how can we ensure that humans and microbes form a stable and benign biosphere; and
–
should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?
Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.