Using Neural Networks to Predict Microspatial Economic Growth

IF 8.1 1区 经济学 Q1 ECONOMICS
A. Khachiyan, Anthony Thomas, Huye Zhou, G. Hanson, Alex Cloninger, Tajana Rosing, A. Khandelwal
{"title":"Using Neural Networks to Predict Microspatial Economic Growth","authors":"A. Khachiyan, Anthony Thomas, Huye Zhou, G. Hanson, Alex Cloninger, Tajana Rosing, A. Khandelwal","doi":"10.1257/aeri.20210422","DOIUrl":null,"url":null,"abstract":"We apply deep learning to daytime satellite imagery to predict changes in income and population at high spatial resolution in US data. For grid cells with lateral dimensions of 1.2 km and 2.4 km (where the average US county has dimension of 51.9 km), our model predictions achieve R2 values of 0.85 to 0.91 in levels, which far exceed the accuracy of existing models, and 0.32 to 0.46 in decadal changes, which have no counterpart in the literature and are 3–4 times larger than for commonly used nighttime lights. Our network has wide application for analyzing localized shocks. (JEL C45, R11, R23)","PeriodicalId":29954,"journal":{"name":"American Economic Review-Insights","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Economic Review-Insights","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1257/aeri.20210422","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

We apply deep learning to daytime satellite imagery to predict changes in income and population at high spatial resolution in US data. For grid cells with lateral dimensions of 1.2 km and 2.4 km (where the average US county has dimension of 51.9 km), our model predictions achieve R2 values of 0.85 to 0.91 in levels, which far exceed the accuracy of existing models, and 0.32 to 0.46 in decadal changes, which have no counterpart in the literature and are 3–4 times larger than for commonly used nighttime lights. Our network has wide application for analyzing localized shocks. (JEL C45, R11, R23)
利用神经网络预测微观空间经济增长
我们将深度学习应用于日间卫星图像,以高空间分辨率预测美国数据中收入和人口的变化。对于横向尺寸为1.2 km和2.4 km的网格单元(其中美国县的平均尺寸为51.9 km),我们的模型在水平上的预测R2值为0.85至0.91,远远超过现有模型的精度,在年代际变化方面的预测R2值为0.32至0.46,这在文献中没有对应值,并且比常用的夜间灯光大3-4倍。该网络在局部冲击分析中具有广泛的应用前景。(凝胶c45, r11, r23)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The journal American Economic Review: Insights (AER: Insights) is a publication that caters to a wide audience interested in economics. It shares the same standards of quality and significance as the American Economic Review (AER) but focuses specifically on papers that offer important insights communicated concisely. AER: Insights releases four issues annually, covering a diverse range of topics in economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信